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Mathematics is a fundamental tool for understanding and solving problems in various fields,
from the natural sciences to engineering and social sciences. One of its core branches is linear
algebra, which deals with the study of vectors, matrices, and systems of linear equations. Another
essential branch is calculus, which focuses on the study of rates of change and accumulation.

This textbook provides a comprehensive introduction to these two fundamental areas of
mathematics. We will explore the concepts of matrices, systems of linear equations, integrals,
differential equations and functions of several variables. These topics are interconnected and
have wide-ranging applications in various fields.

Matrices are rectangular arrays of numbers or symbols arranged in rows and columns.
They are used to represent data, solve systems of equations, and perform transformations in
geometry. Systems of linear equations are sets of equations involving linear expressions. Solving
these systems is a common task in mathematics and has practical applications in fields such as
engineering, economics, and computer graphics.

Integrals are used to calculate areas, volumes, and other quantities. They are a fundamental
concept in calculus and have applications in physics, engineering, and economics. Differential
equations are equations involving derivatives of functions. They are used to model various
phenomena in physics, engineering, biology, and other fields.

This textbook provides a solid foundation in essential mathematical concepts that are crucial
for first-year university students, since it covers the most common and important chapters
(Matrices, systems, integrals and differential equations) about the unit Mathematics 2.

Throughout this document, the narrative is designed to captivate the reader’s focus. Examples
and solved applications are seamlessly integrated into the text, creating an immersive learning
experience. Visual aids and illustrative examples are strategically placed to reinforce comprehen-
sion and spark curiosity. This modest textbook is very concise with little amount of proofs and
easy problems. Therefore, I would recommend it as a first reading experience before getting into
more detailed and elaborated sources.

In concluding this introduction, i would give many Thanks to Dr. Anes MOULAI-KHATIR
for all his support and his serious contribution to this work.
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1. Matrices and Determinants

Almost every program that gathers and organizes information can utilize matrices. The utilization
of matrices has expanded with the rise in data availability across various aspects of life and
business. They play a crucial role in arranging data across various scientific disciplines such as
physics, chemistry, biology, genetics, computer science, meteorology and economics. They are
also used for bringing images to life in movies and video games through animation.

1.1 Matrices

Matrices are tables of numbers. Most linear algebra problems are solved by manipulating
matrices. this is true, particularly when solving linear systems.

In this chapter, K represents a field. We can think of R or C.

1.1.1 Definitions and basic concepts

• a matrix A is a rectangular table of elements of K.
• It is said to be of size n× p if the table possess n lines and p columns.
• The numbers of the table are called coefficients of A.
• the coefficient situated at ith line and the jth column is noted ai, j.
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This table is represented by:

A =



a1,1 a1,2 . . . a1, j . . . a1,p

a2,1 a2,2 . . . a2, j . . . a2,p

. . . . . . . . . . . . . . . . . .

ai,1 ai,2 . . . ai, j . . . ai,p

. . . . . . . . . . . . . . . . . .

an,1 an,2 . . . an, j . . . an,p


or A =

(
ai, j
)

1≤i≤n
1≤ j≤p

.

■ Example 1.1

A =

 1 −2 5

0 3 7


is a matrix 2×3 with, for example, a1,1 = 1 and a2,3 = 7. ■

R
• Two matrices are equal when they have the same size and their corresponding coeffi-

cients are equal.
• The set of matrices with n line and p column and with coefficients in K are written

Mn,p(K). The elements of Mn,p(R) are called real matrices.

• If n = p (same number of lines and columns), the matrix is called square matrix. We
write Mn(K) instead of Mn,n(K).

a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

... . . . ...

an,1 an,2 . . . an,n


The elements a1,1,a2,2, . . . ,an,n form the principal diagonal of the matrix.

• A matrix with only one line (n = 1) is called line matrix or line vector. We write

A =
(

a1,1 a1,2 . . . a1,p

)
.

• Similarly, A matrix with only one column (p = 1) is called column matrix or column
vector. We write

A =


a1,1

a2,1
...

an,1

 .

• A matrix (of size n× p) with all coefficients equal to zero, is called null matrix and is
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noted 0n,p or simply 0. In the matrix calculus, the null matrix plays the role of the number
0 for the reals.

1.1.2 Addition of matrices

Definition 1.1.1 Let A and B two matrices of the same size n× p. Their sum C = A+B is
the matrix of size n× p defined by

ci j = ai j +bi j.

■ Example 1.2

If A =

3 −2

1 7

 and B =

0 5

2 −1


then

A+B =

3 3

3 6

 .

however if B′ =

−2

8

 then A+B′ is not defined

■

Definition 1.1.2 The product of a matrix A =
(
ai j
)

of Mn,p(K) by a scalar α ∈K is the matrix(
αai j

)
formed by multiplying each coefficient of A by α . It is noted α ·A (or simply αA).

■ Example 1.3

If A =

1 2 3

0 1 0

 and α = 2 then αA =

2 4 6

0 2 0

 .

■

The matrix (−1)A is the opposite of A and is written −A.
The difference A−B is defined by A+(−B).

■ Example 1.4

If A =

2 −1 0

4 −5 2

 and B =

−1 4 2

7 −5 3


then

A−B =

 3 −5 −2

−3 0 −1

 .

■

Proposition 1.1.1 Let A, B and C three matrices belonging to Mn,p(K). Let α ∈K and β ∈K
two scalars.
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1. A+B = B+A : The sum is commutative,
2. A+(B+C) = (A+B)+C : The sum is associative,
3. A+0 = A : the null matrix is the neutral element of the addition,
4. (α +β )A = αA+βA,
5. α(A+B) = αA+αB.

1.1.3 Product of matrices

The product AB of two matrices A and B is defined if, and only if the number of columns of A is
equal to number of lines of B.

Definition 1.1.3 — Product of two matrices. Let A = (ai j) a matrix n× p and B = (bi j) a
matrix p×q. Then the product C = AB is a matrix n×q whose coefficients ci j are defined by
:

ci j =
p

∑
k=1

aikbk j = ai1b1 j +ai2b2 j + · · ·+aikbk j + · · ·+aipbp j.

It is common to dispose the calculation in the following manner.


×

×

×

×

 ← B

A→

× × × ×




|

|

− − − ci j

 ← AB

Let :

A =

1 2 3

2 3 4

 B =


1 2

−1 1

1 1


First test : 

1 2

−1 1

1 1


1 2 3

2 3 4

 c11 c12

c21 c22




1 2

−1 1

1 1


1 2 3

2 3 4

  2 c12

c21 c22


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Hence : 2 7

3 11

 = AB

Proposition 1.1.2 1. The product of matrices is not commutative in general,
2. AB = 0 does not imply A = 0 or B = 0,
3. AB = AC does not imply B =C,
4. A(BC) = (AB)C : associativity of the product,
5. A(B+C)=AB+AC and (B+C)A=BA+CA : distributivity of the product compared

to the sum.
6. A ·0 = 0 and 0 ·A = 0.

Definition 1.1.4 — Identity Matrix. The following square matrix is called the identity
matrix:

In =


1 0 . . . 0

0 1 . . . 0
...

... . . . ...

0 0 . . . 1



Proposition 1.1.3 If A is a matrix n× p, then

In ·A = A and A · Ip = A.

Definition 1.1.5 — Invertible Matrices. Let A ∈Mn(K), we say that A is invertible if

∃B ∈Mn(K),AB = In or ∃C ∈Mn(K),CA = In

The inverse matrix of A is denoted A−1 and verifies AA−1 = A−1A = In.

In the set Mn(K) of square matrices of size n× n with coefficients in K, the product of
matrices is an internal operation : if A,B ∈Mn(K) then AB ∈Mn(K).

Particularly, we can multiply a square matrix by itself: we note A2 = A×A, A3 = A×A×A.

Hence, we can define successive powers of matrices :

Definition 1.1.6 For all A ∈ Mn(K), we define the successive power of matrices of A by
A0 = In and Ap+1 = Ap×A for all p ∈ N. In other words,

Ap = A×A×·· ·×A︸ ︷︷ ︸
p times

.



10 Chapter 1. Matrices and Determinants

We seek to calculate Ap with A =


1 0 1

0 −1 0

0 0 2

. we calculate A2, A3 and A4 and we get :

A2 =


1 0 3

0 1 0

0 0 4

 A3 = A2×A =


1 0 7

0 −1 0

0 0 8

 A4 =


1 0 15

0 1 0

0 0 16

 .

A close look at the first powers allows one to think that the formula is: Ap =


1 0 2p−1

0 (−1)p 0

0 0 2p

.

Exercise : Prove the result by induction.

Let A a matrix of size n×n. We say that A is a lower triangular matrix or left triangular
matrix if its elements under the diagonal are nulls, in other words :

i < j =⇒ ai j = 0.

A lower triangular matrix has the following form:

a11 0 · · · · · · 0

a21 a22
. . . ...

...
... . . . . . . ...

...
... . . . 0

an1 an2 · · · · · · ann


We say that A is an upper triangular matrix or right triangular matrix. if its elements

over the diagonal are nulls, in other words:

i > j =⇒ ai j = 0.

An upper triangular matrix has the following form:

a11 a12 . . . . . . . . . a1n

0 a22 . . . . . . . . . a2n
... . . . . . . ...
... . . . . . . ...
... . . . . . . ...

0 . . . . . . . . . 0 ann


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Two lower triangular matrices (left and center), one upper triangular matrix (right):
4 0 0

0 −1 0

3 −2 3


5 0

1 −2




1 1 −1

0 −1 −1

0 0 −1


A matrix that is lower triangular and upper triangular is said to be diagonal. In other words:
i ̸= j =⇒ ai j = 0.

■ Example 1.5 If D is a diagonal matrix, we can easily calculate its powers Dp (by induction in
p) :

D =



α1 0 . . . . . . 0

0 α2 0 . . . 0
... . . . . . . . . . ...

0 . . . 0 αn−1 0

0 . . . . . . 0 αn


=⇒ Dp =



α
p
1 0 . . . . . . 0

0 α
p
2 0 . . . 0

... . . . . . . . . . ...

0 . . . 0 α
p
n−1 0

0 . . . . . . 0 α
p
n


■

Theorem 1.1.4 A matrix A of size n×n, triangular, is invertible if and only if its diagonal
elements are not null.

Let A a matrix of size n× p

A =


a11 a12 . . . a1p

a21 a22 . . . a2p
...

...
...

an1 an2 . . . anp

 .

Definition 1.1.7 We call the transpose of A the matrix AT of size p×n defined by :

AT =


a11 a21 . . . an1

a12 a22 . . . an2
...

...
...

a1p a2p . . . anp

 .

■ Example 1.6 
1 2 3

4 5 −6

−7 8 9


T

=


1 4 −7

2 5 8

3 −6 9


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0 3

1 −5

−1 2


T

=

0 1 −1

3 −5 2

 (1 −2 5)T =


1

−2

5


■

Theorem 1.1.5 1. (A+B)T = AT +BT

2. (αA)T = αAT

3. (AT )T = A

4. (AB)T = BT AT

5. If A is invertible, then AT is also invertible, and we have (AT )−1 = (A−1)T .

R In the case of a square matrix of size n× n, the elements a11, a22, . . . ,ann are called the
diagonal elements.

Its principal diagonal is the diagonal (a11,a22, . . . ,ann).
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann



Definition 1.1.8 The trace of the matrix A is the sum of the diagonal elements of A. In other
words,

A = a11 +a22 + · · ·+ann.

■ Example 1.7 • If A =

2 1

0 5

, then (A) = 2+5 = 7.

• For B =


1 1 2

5 2 8

11 0 −10

, (B) = 1+2−10 =−7.

■

Theorem 1.1.6 Let A and B two matrices n×n. then :
1. (A+B) = A + B,
2. (αA) = α A for all α ∈K,
3. (AT ) = A,
4. (AB) = (BA).



1.2 Determinant 13

Definition 1.1.9 A matrix A of size n×n is symmetric if it is equal to its transpose, which
means if

A = AT ,

or even, if ai j = a ji for all i, j = 1, . . . ,n. The coefficients are then symmetric and therefore
symmetrical with respect to the diagonal.

■ Example 1.8 The following matrices are symmetric :

0 2

2 4



−1 0 5

0 2 −1

5 −1 0


■

DETERMINANTS

1.2 Determinant

The determinant is a number we associate to n vectors (v1, . . . ,vn) of Rn. It corresponds to the
volume of parallelepiped generated by those n vectors. We can also define the determinant of a
matrix A. The determinant lets you know if a matrix is invertible or not, and generally speaking,
plays an important role in matrix calculus and linear systems resolution.

In all the following, we will consider matrices with coefficients in a commutative field K,
where the principal examples being K= R or K= C. We start by giving the expressions of the
determinants for matrices in small dimensions.

In dimension 2, the determinant is easily calculated:

det

a b

c d

= ad−bc.

It is the product of the elements of the principal diagonal minus the product of the second
principal diagonal.
Let A ∈M3(K) a matrix 3×3:

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

This is the formula for the determinant:

detA = +a11a22a33 +a12a23a31 +a13a21a32

−a31a22a13−a32a23a11−a33a21a12 .
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Let us calculate the determinant of the matrices :

A =

 2 1

−10 −1

 B =


2 1 0

1 −1 3

3 2 1

 .

By calculus, we have:
detA = 2× (−1)− (−10)×1 = 8.

detB = 2× (−1)×1+1×3×3+0×1×2

−3× (−1)×0−2×3×2−1×1×1 =−6.

1.2.1 Calculus of determinants

One of the most useful technics to calculate the determinant is « Expansion by line (or by
column)».

Definition 1.2.1 Let A =
(
ai j
)
∈Mn(K) a square matrix.

• We denote Ai j the extracted matrix, obtained by removing the line i and the column j
of A.

• The number detAi j is a minor of order n−1 of the matrix A.
• The number Ci j = (−1)i+ j detAi j is the cofactor of A related to the coefficient ai j.

A =



a1,1 · · · a1, j−1 a1, j a1, j+1 · · · a1,n
...

...
...

...

ai−1,1 · · · ai−1, j−1 ai−1, j ai−1, j+1 · · · ai−1,n

ai,1 · · · ai, j−1 ai, j ai, j+1 · · · ai,n

ai+1,1 · · · ai+1, j−1 ai+1, j ai+1, j+1 · · · ai+1,n
...

...
...

...

an1 · · · an, j−1 an, j an, j+1 · · · ann



Ai j =



a1,1 . . . a1, j−1 a1, j+1 . . . a1,n
...

...
...

...

ai−1,1 . . . ai−1, j−1 ai−1, j+1 . . . ai−1,n

ai+1,1 . . . ai+1, j−1 ai+1, j+1 . . . ai+1,n
...

...
...

an,1 . . . an, j−1 an, j+1 . . . an,n


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■ Example 1.9 Let A =


1 2 3

4 2 1

0 1 1

. Let’s Calculate A11,C11,A32,C32.

A32 =


1 2 3

4 2 1

0 1 1

=

1 3

4 1

 .

C32 = (−1)3+2 detA32 = (−1)× (−11) = 11.

■

Remember that we associate signs : A =


+ − + − . . .

− + − + . . .

+ − + − . . .
...

...
...

...

 .

So C11 =+detA11, C12 =−detA12, C21 =−detA21...

Theorem 1.2.1 — Expansion following a line or a column. Formula of expansion by line i:

detA =
n

∑
j=1

(−1)i+ jai j detAi j =
n

∑
j=1

ai jCi j

Formula of expansion by column j:

detA =
n

∑
i=1

(−1)i+ jai j detAi j =
n

∑
i=1

ai jCi j

Let’s find the formula of determinants 3×3, by expansion following the first line.∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣ = a11C11 +a12C12 +a13C13

= a11

∣∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣∣−a12

∣∣∣∣∣∣a21 a23

a31 a33

∣∣∣∣∣∣+a13

∣∣∣∣∣∣a21 a22

a31 a32

∣∣∣∣∣∣
= a11(a22a33−a32a23)−a12(a21a33−a31a23)

+a13(a21a32−a31a22)

= a11a22a33−a11a32a23 +a12a31a23−a12a21a33

+a13a21a32−a13a31a22.
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■ Example 1.10

A =


4 0 3 1

4 2 1 0

0 3 1 −1

1 0 2 3



detA = 0C12 +2C22 +3C32 +0C42

(exp. through the second column)

= +2

∣∣∣∣∣∣∣∣∣
4 3 1

0 1 −1

1 2 3

∣∣∣∣∣∣∣∣∣−3

∣∣∣∣∣∣∣∣∣
4 3 1

4 1 0

1 2 3

∣∣∣∣∣∣∣∣∣
exp. of two determinants 3×3

= +2

+4

∣∣∣∣∣∣1 −1

2 3

∣∣∣∣∣∣−0

∣∣∣∣∣∣3 1

2 3

∣∣∣∣∣∣+1

∣∣∣∣∣∣3 1

1 −1

∣∣∣∣∣∣


(following the first column)

−3

−4

∣∣∣∣∣∣3 1

2 3

∣∣∣∣∣∣+1

∣∣∣∣∣∣4 1

1 3

∣∣∣∣∣∣−0

∣∣∣∣∣∣4 3

1 2

∣∣∣∣∣∣


(following the second column)

= +2
(
+4×5−0+1× (−4)

)
−3
(
−4×7+1×11−0

)
= 83

■

1.2.2 Calculus of the inverse of a matrix

Let A ∈Mn(K) a suqare matrix. We associate to it a matrix C of the cofactors, called Comatrix,
denoted by Com(A):

C = (Ci j) =


C11 C12 · · · C1n

C21 C22 · · · C2n
...

...
...

Cn1 Cn2 · · · Cnn


Theorem 1.2.2 Let A a square matrix, then

A is invertible, if and only ifdetA ̸= 0.

In addition, if A is invertible, and C is its comatrix, we can caluculate the inverse of A using
the formula

A−1 =
1

detA
CT
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■ Example 1.11 Let A =


1 1 0

0 1 1

1 0 1

.

The calculus gives detA = 2.
The comatrix C is obtained by calculating 9 determinants 2× 2 (without forgetting the signs
+/−). We find :

C =


1 1 −1

−1 1 1

1 −1 1

 ,

So

A−1 =
1

detA
·CT =

1
2


1 −1 1

1 1 −1

−1 1 1

 .

■

MATRIX ASSOCIATED TO A LINEAR MAP
(OR APPLICATION)

1.3 Matrix associated to a linear map

We will see that there exists a close connection between matrices and linear applications.
Naturally, to a matrix, we associate a linear application. Conversely, given a linear application
and bases for the vector spaces of departure and arrival, we associate a matrix.

Let E and F be two K-vector spaces of finite dimension. Let p be the dimension of E and
B = (e1, . . . ,ep) be a basis for E. Let n be the dimension of F and B′ = ( f1, . . . , fn) be a basis
for F . Finally, let f : E→ F be a linear application.

Definition 1.3.1 The matrix of the linear application f with respect to the bases B and B′

is the matrix (ai, j) ∈Mn,p(K) whose j-th column is formed by the coordinates of the vector
f (e j) in the base B′ = ( f1, f2, . . . , fn):



f (e1) . . . f (e j) . . . f (ep)

f1 a11 a1 j . . . a1p

f2 a21 a2 j . . . a2p
...

...
...

...
...

fn an1 an j . . . anp


In simpler terms: it is the matrix whose column vectors are the image by f of the vectors from
the starting base B, expressed in the destination base B′. This matrix is denoted as B,B′( f ).
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Let f be the linear application from R3 to R2 defined by

f : R3 −→ R2

(x1,x2,x3) 7−→ (x1 + x2− x3,x1−2x2 +3x3)

It is useful to identify row vectors and column vectors; thus, f can be seen as the application
f :
( x1

x2
x3

)
7→
(

x1+x2−x3
x1−2x2+3x3

)
.

Let B = (e1,e2,e3) be the canonical basis of R3 and B′ = ( f1, f2) be the canonical basis of
R2. That is:

e1 =


1

0

0

 e2 =


0

1

0

 e3 =


0

0

1

 f1 =

1

0

 f2 =

0

1


What is the matrix of f in the bases B and B′?
We have f (e1) = f (1,0,0) = (1,1), f (e2) = (1,−2), and f (e3) = (−1,3). Thus:

B,B′( f ) =

1 1 −1

1 −2 3


We will now change the basis of the departure space and that of the arrival space. Consider

the vectors

ε1 =


1

1

0

 ε2 =


1

0

1

 ε3 =


0

1

1

 φ1 =

1

0

 φ2 =

1

1



One can easily show that B0 = (ε1,ε2,ε3) is a basis of R3 and B′0 = (φ1,φ2) is a basis of R2.

What is the matrix of f in the bases B0 and B′0?

f (ε1) = f (1,1,0) = (2,−1) = 3φ1−φ2, f (ε2) = f (1,0,1) = (0,4) =−4φ1 +4φ2, f (ε3) =

f (0,1,1) = (0,1) =−φ1 +φ2, thus

B0,B
′
0
( f ) =

 3 −4 −1

−1 4 1

 .

Conversely, given a matrix A ∈M2,3(R) expressed in the canonical bases of R2 and R3 as

A =

1 3 5

2 4 6


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We can define the linear application f ∈L (R3,R2) associated with it by

f (x,y,z) = (x+3y+5z,2x+4y+6z)

CHANGE OF BASIS, TRANSITION MATRIX

1.4 Change of Basis, Transition Matrix

Let E be a finite-dimensional vector space, and let B = (e1,e2, . . . ,ep) be a basis of E. For each
x ∈ E, there exists a unique p-tuple of elements from K (x1,x2, . . . ,xp) such that

x = x1e1 + x2e2 + · · ·+ xpep.

The matrix of the coordinates of x is a column vector, denoted B(x) or

( x1
x2
...

xp

)
B

.

In Rp, if B is the canonical basis, then we simply write

( x1
x2
...

xp

)
without mentioning the basis.

Let E and F be two K-vector spaces of finite dimension, and f : E→ F a linear application.

Let B be a basis of E and B′ a basis of F .

Proposition 1.4.1 • Let A =B,B′ ( f ).

• For x ∈ E, denote X =B (x) =

( x1
x2
...

xp

)
B

.

• For y ∈ F , denote Y =B′ (y) =

( y1
y2
...

yn

)
B′

.

Then, if y = f (x), we have

Y = AX

In other words:

B′
(

f (x)
)
=B,B′ ( f )×B (x)
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Functional Language Matrix Language

Vector Column Matrix

x ∈ E X ∈Mp,1(K)

0 Op,1

λx+µy λX +µY

Linear Application Rectangular Matrix

u ∈L (E,F) A ∈Mn,p(K)

y = u(x) Y = AX

v◦u BA

u isomorphism, u−1 A invertible, A−1

u ∈L (E) A ∈Mn(K)

IdE In

um Am

Let E be a finite-dimensional vector space of dimension n. We know that all bases of E have
n elements.

Definition 1.4.1 — Transition Matrix. Let B be a basis of E. Let B′ be another basis of E.
The Transition Matrix from the base B to the base B′, denoted B,B′ , is the square

matrix of size n×n whose j-th column is formed by the coordinates of the j-th vector of the
base B′, with respect to the base B.

In summary:

The Transition Matrix B,B′ contains - in columns - the coordinates of the
vectors of the new base B′ expressed in the old base B.

This is why sometimes B,B′ is also denoted as B(B′).

■ Example 1.12 Let’s consider the real vector space R2. We have

e1 =

1

0

 e2 =

1

1

 ε1 =

1

2

 ε2 =

5

4

 .

Consider the base B = (e1,e2) and the base B′ = (ε1,ε2).
What is the Transition Matrix from B to B′?
We need to express ε1 and ε2 in terms of (e1,e2). We calculate that:

ε1 =−e1 +2e2 =

−1

2


B

ε2 = e1 +4e2 =

1

4


B
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The Transition Matrix is therefore:

B,B′ =

−1 1

2 4


■

• Let E and F be two K-vector spaces of finite dimension.
• Let f : E→ F be a linear application.
• Let BE , B′E be two bases of E.
• Let BF , B′F be two bases of F .
• Let P =BE ,B′E

be the Transition Matrix from BE to B′E .
• Let Q =BF ,B′F

be the Transition Matrix from BF to B′F .
• Let A =BE ,BF ( f ) be the matrix of the linear application f from the base BE to the base

BF .
• Let B =B′E ,B

′
F
( f ) be the matrix of the linear application f from the base B′E to the base

B′F .

Theorem 1.4.2 — Change of Basis Formula. B = Q−1AP



2. Systems of linear equations

Linear algebra utilizes linear systems, which play an integral role in modern mathematics.
They are essential in various fields like engineering, physics, chemistry, computer science, and
economics. A linear system is frequently used as an approximation for a non-linear system of
equations.

INTRODUCTION TO SYSTEMS OF LINEAR
EQUATIONS

2.1 Introduction to Systems of linear equations

Let n, p ∈ N∗. We call Linear Systems of n equations with p unknowns, any equations system
of the form

(S )



a11x1 +a12x2 +a13x3 + · · · +a1pxp = b1 (← equation 1)

a21x1 +a22x2 +a23x3 + · · · +a2pxp = b2 (← equation 2)
...

...
...

... =
...

ai1x1 +ai2x2 +ai3x3 + · · · +aipxp = bi (← equation i)
...

...
...

... =
...

an1x1 +an2x2 +an3x3 + · · · +anpxp = bn (← equation n)

where, for i = 1, . . . ,n, j = 1, . . . , p, the scalars ai j,bi ∈K are given.
For all i ∈ 1,n, j ∈ 1, p, the x j are called the unknowns of the system, whereas the ai j are

called coefficients of the system and the b j form the second member of the system.
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•

{
x1−2x2 = 1

2x1−3x2 = 4
is a linear system of 2 equations with 2 unknowns. The second member

is

 1

4

.

•

 x+2y+ z = 3

7x−5y−2z = 2
is a linear system of 2 equations with 3 unknowns. The second

member is

 3

2

.

•

{
ex + y = 1

x+ sin(y) = 2
is not a linear system.

•

 x2 +2y3 =−3

2x4− y5 = 2
is not a linear system.

• Let (S ) the linear system introduced previously.
• We call matrix of a system (S ) the matrix A of n lines and p columns given by

A =



a1,1 a1,2 . . . a1, j . . . a1,p

a2,1 a2,2 . . . a2, j . . . a2,p
...

...
...

...
...

...

ai,1 ai,2 . . . ai, j . . . ai,p
...

...
...

...
...

...

an,1 an,2 . . . an, j . . . an,p


∈Mn,p(K).

• We call matrix column of the second member of (S ) the vector column B constituted
by the coefficients b j, j = 1, . . . , p defined by :

B =


b1
...

bn

 ∈Mn,1(K).

• We call augmented system matrix (S ) the matrix Ã= (A|B) of n lines and p+1 columns
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given by

Ã =



a1,1 a1,2 . . . a1, j . . . a1,p b1

a2,1 a2,2 . . . a2, j . . . a2,p b2
...

...
...

...
...

...
...

ai,1 ai,2 . . . ai, j . . . ai,p bi
...

...
...

...
...

...
...

an,1 an,2 . . . an, j . . . an,p bn


∈Mn,p+1(K).

• If we note X =


x1
...

xp

 ∈Mp,1(K) then the system (S ) is equivalent to

A.X = B.

This equation is called system matrix equation, and the rank of A is also called rank of the
system.

Given the following system

■ Example 2.1 Given the following system

(S ) :


x = y+2z+1

z+ y+2 =−3x

2x+3y−3 = 17z

then the associated matrix to (S ) is A =


1 −1 −2

3 1 1

2 3 −17



The matrix column of the second member is B =


1

−2

3

 and the augmented matrix is

Ã =


1 −1 −2 1

3 1 1 −2

2 3 −17 3

.

Hence (S ) is written
1 −1 −2

3 1 1

2 3 −17

 .


x

y

z

=


1

−2

3

 .

■

STUDY OF THE SET OF SOLUTIONS

2.2 Study of the set of solutions
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Definition 2.2.1 A solution of a linear system is a p-tuple (s1,s2, . . . ,sp) ∈Kp (p numbers
(reals or complexes) such that if we substitute x1 by s1, x2 by s2, ... and xp by sp in a linear
system described in the definition, we get an equality. The set of solutions of the system is
the set of all its p-tuples.

■ Example 2.2 The system  x1 − 3x2 + x3 = 1

−2x1 + 4x2 − 3x3 = 9

admits a solution (−18,−6,1), in other words

x1 =−18 , x2 =−6 , x3 = 1 .

However, (7,2,0) is not a solution of the system. ■

We aim to determine all the solutions of a linear system. This is called solving the sys-
tem.

Theorem 2.2.1 For a system of linear equations, three cases arise:
1. The system does not admit any solution.
2. The system admits only one solution.
3. The system admits an infinity of solutions.

R A linear system which admits at least one solution is said to be compatible otherwise, it is
said to be incompatible.
An important special case is that of homogeneous systems (systems whose second member
is zero). Such systems are always compatible because they admit the solution s1 = s2 =

· · ·= sp = 0. This solution is called trivial solution.

METHODS FOR SOLVING A LINEAR SYSTEM

2.3 Methods for solving a linear system

2.3.1 Operations on the equations of a linear system

We will define three elementary operations on the equations (that is to say on the lines) which are:

Definition 2.3.1 — Elementary operations. We denote by L1, . . . ,Ln the lines of a linear
system of n equations and let (i, j) ∈ 1,n2 and λ ∈K∗.

• We denote Li↔ L j, the operation consisting of exchanging (permuting) the lines Li and
L j.

• We note Li← λLi, the operation consisting of multiplying the line Li by λ .
• We note Li← Li +λL j, the operation consisting of adding λ times line L j to line Li.
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Note: each of these 3 operations results in a system equivalent to the first i.e. a system having
the same compatibility and the same set of solutions.

Let (S ) :


x +y +7z = −1 (L1)

2x −y +5z = −5 (L2)

−x −3y −9z = −5 (L3)

The result of L1←−3L1 is (S ′) :


−3x −3y −21z = 3

2x −y +5z = −5

−x −3y −9z = −5

. If we apply the operation

L2↔ L3 to (S ′), we get (S ′′) :

(S ′′)


−3x −3y −21z = 3

−x −3y −9z = −5

2x −y +5z = −5

.

By the operation L3← L3−2L2 applied to (S ′′), we get (S ′′′) :

(S ′′′)


−3x −3y −21z = 3

−x −3y −9z = −5

4x +5y +23z = 5

2.3.2 Resolution by substitution

To find out if there are one or more solutions to a linear system, and to calculate them, a first
method is substitution. For example for the system: 3x+2y = 1

2x−7y = −2
(S)

We rewrite the first line 3x+2y = 1 as y =
1
2
− 3

2
x, and we replace (we substitute) the y of the

second equation, by the expression
1
2
− 3

2
x. We get an equivalent system :


y =

1
2
− 3

2
x

2x−7(
1
2
− 3

2
x) = −2

The second equation is now an expression that contains only x, and we can solve it:
y =

1
2
− 3

2
x

(2+7× 3
2
)x = −2+

7
2

⇐⇒


y =

1
2
− 3

2
x

x =
3

25
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Remember : 
y =

1
2
− 3

2
x

(2+7× 3
2
)x = −2+

7
2

⇐⇒


y =

1
2
− 3

2
x

x =
3

25

All that remains is to replace the value of x obtained in the first line:
y =

8
25

x =
3
25

The system (S) admits a unique solution (
3

25
,

8
25

). The set of solutions is therefore

S =

{(
3
25

,
8
25

)}
.

2.3.3 Inverse matrix method

In matrix terms, the linear system  ax+by = e

cx+dy = f

is equivalent to

AX = Y où A =

a b

c d

 , X =

x

y

 , Y =

e

f

 .

If the determinant of the matrix A is not null, which means if ad−bc ̸= 0, then the matrix A
is invertible and

A−1 =
1

ad−bc

 d −b

−c a


and the unique solution X = ( x

y) of the system is given by

X = A−1Y.

■ Example 2.3 Let’s solve the system

 x+ y = 1

x+ t2y = t
following the argument t ∈ R.

the determinant of the system is
∣∣1 1

1 t2

∣∣= t2−1.

First case: t ̸=+1 and t ̸=−1. Then t2−1 ̸= 0. The matrix A =
(1 1

1 t2

)
is invertible with
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for inverse A−1 =
1

t2−1

(
t2 −1
−1 1

)
. we have:

X = ( x
y) = A−1B =

1
t2−1

 t2 −1

−1 1

1

t

=
1

t2−1

t2− t

t−1

=

 t
t +1

1
t +1

 .

For each t ̸=±1, the set of solutions is S =
{( t

t +1
,

1
t +1

)}
.

Second case: t =+1. There are an infinity of solutions : S =
{
(x,1−x) | x ∈R

}
(identical

equations).

Third case: t =−1. The system is then written :

 x+ y = 1

x+ y = −1
, The two equations are

clearly incompatible and then S =∅. ■

Consider the following system of linear equations with n equations and n unknowns:
a11x1 +a12x2 + · · ·+a1nxn = b1

a21x1 +a22x2 + · · ·+a2nxn = b2

. . .

an1x1 +an2x2 + · · ·+annxn = bn

or in matrix form AX = B with

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

 ∈Mn(K),X =


x1

x2
...

xn

 et B =


b1

b2
...

bn

 .

Theorem 2.3.1 Under the condition det(A) ̸= 0, the solution of the previous system is given
by the formula:

X = A−1B.

2.3.4 Cramer’s method

We consider the case of a system of 2 equations with 2 unknowns: ax+by = e

cx+dy = f
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We denote ∆ =
∣∣a b

c d

∣∣= ad−bc the determinant.
If ∆ ̸= 0, we find a unique solution (x,y) such that:

x =

∣∣∣∣∣∣e b

f d

∣∣∣∣∣∣
∆

y =

∣∣∣∣∣∣a e

c f

∣∣∣∣∣∣
∆

Note that the denominator equals the determinant for both coordinates and is therefore
non-zero. For the numerator of the first coordinate x, we replace the first column by the second
member; for the second coordinate y, we replace the second column by the second member.

■ Example 2.4 Let’s solve the system

 tx−2y = 1

3x+ ty = 1
depending on the parameter value

t ∈ R.

The determinant associated to the system is
∣∣ t −2

3 t

∣∣ = t2 +6 and never cancels. Therefore,
there exists a unique solution (x,y) and it satisfies:

x =

∣∣∣∣∣∣1 −2

1 t

∣∣∣∣∣∣
t2 +6

=
t +2
t2 +6

, y =

∣∣∣∣∣∣t 1

3 1

∣∣∣∣∣∣
t2 +6

=
t−3
t2 +6

.

For each t, the set of solutions is S =

{(
t +2
t2 +6

,
t−3
t2 +6

)}
. ■

Definition 2.3.2 — Cramer’s System. A system of linear equations with as many equations
as unknowns and whose determinant of the coefficient matrix is non-zero is called a Cramer’s
system.

Let us define the matrix A j ∈Mn(K) by

A j =


a11 . . . a1, j−1 b1 a1, j+1 . . . a1n

a21 . . . a2, j−1 b2 a2, j+1 . . . a2n
...

...
...

...
...

an1 . . . an, j−1 bn an, j+1 . . . ann


In other words, A j is the matrix obtained by replacing the j-th column of A by the second

member B.

Theorem 2.3.2 — Cramer’s rule. Let AX = B a Cramer’s system, i.e.
a system of n equations with n unknowns with A invertible.
So this system has one and only one solution (x1,x2, . . . ,xn) given by:

x1 =
detA1

detA
x2 =

detA2

detA
. . . xn =

detAn

detA
.
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■ Example 2.5 Let’s solve the system:
x1 + 2x3 = 6

−3x1 + 4x2 + 6x3 = 30

−x1 − 2x2 + 3x3 = 8.

A =


1 0 2

−3 4 6

−1 −2 3

B =


6

30

8

 .

We have

A1 =


6 0 2

30 4 6

8 −2 3

 A2 =


1 6 2

−3 30 6

−1 8 3

 A3 =


1 0 6

−3 4 30

−1 −2 8


and

detA = 44 detA1 =−40 detA2 = 72 detA3 = 152.

The solution is then

x1 =
detA1

detA
=−40

44
x2 =

detA2

detA
=

72
44

x3 =
detA3

detA
=

152
44
·

■

GAUSSIAN METHOD

2.3.5 Gaussian method

The Gaussian pivot method allows you to find solutions to any linear system. We will describe
this algorithm using an example. It is a precise description of a sequence of operations to be
carried out, which depend on the situation and a precise order. This process always results (and
rather quickly) in a scaled and then reduced system, which immediately leads to the system
solutions.

Consider the following system to solve:
−x2 +2x3 +13x4 = 5

x1 −2x2 +3x3 +17x4 = 4

−x1 +3x2 −3x3 −20x4 = −1

To apply the Gaussian pivot method, it is necessary that the first coefficient of the first line
is non-zero. As this is not the case here, we exchange the first two lines using the elementary
operation L1↔ L2 : 

x1 −2x2 +3x3 +17x4 = 4 L1↔L2

−x2 +2x3 +13x4 = 5

−x1 +3x2 −3x3 −20x4 = −1



2.3 Methods for solving a linear system 31

We already have a coefficient 1 in front of the x1 in the first line. We say that we have a pivot
in position (1,1) (first row, first column). This pivot serves as the basis for eliminating all other
terms on the same column.

There is no x1 term on the second line. Let’s remove the term x1 from the third line; for this
we perform the elementary operation L3← L3 +L1 :

x1 −2x2 +3x3 +17x4 = 4

−x2 +2x3 +13x4 = 5

x2 −3x4 = 3 L3←L3+L1

We change the sign of the second line (L2←−L2) to show 1 to the pivot coefficient (2,2)
(second row, second column):

x1 −2x2 +3x3 +17x4 = 4

x2 −2x3 −13x4 = −5 L2← −L2

x2 −3x4 = 3

We remove the term x2 from the third line, then we reveal a coefficient 1 for the pivot of the
position (3,3): 

x1 −2x2 +3x3 +17x4 = 4

x2 −2x3 −13x4 = −5

2x3 +10x4 = 8 L3←L3−L2
x1 −2x2 +3x3 +17x4 = 4

x2 −2x3 −13x4 = −5

x3 +5x4 = 4 L3← 1
2 L3

The system is now in phased (staggered) form.

It remains to put it in reduced scale form. To do this, we add to a line suitable multiples of
the lines located below it, going from bottom right to top left. We make 0 appear on the third
column using the pivot of the third row:

x1 −2x2 +3x3 +17x4 = 4

x2 −3x4 = 3 L2←L2+2L3

x3 +5x4 = 4

and 
x1 −2x2 2x4 = −8 L1←L1−3L3

x2 −3x4 = 3

x3 +5x4 = 4
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We make 0 appear on the second column (using the pivot of the second row):
x1 −4x4 = −2 L1←L1+2L2

x2 −3x4 = 3

x3 +5x4 = 4

The system is now in a reduced form.
The system is now very simple to solve. By choosing x4 as a free variable, we can express

x1,x2,x3 in terms of x4 :

x1 = 4x4−2, x2 = 3x4 +3, x3 =−5x4 +4.

Which makes it possible to obtain all the solutions of the system:

S =
{
(4x4−2,3x4 +3,−5x4 +4,x4) | x4 ∈ R

}
.

The Gaussian pivot method works as follows:
• We are looking for a line showing the first unknown. The coefficient appearing in front of

this unknown is called the pivot. We swap lines to bring the pivot to the first line.
• We make the first unknown disappear from the other lines using elementary operations

Li← Li +λL1.
• We start again from the second line and the next unknown which still appears in the

following lines.
We then arrive at a staggered system of the following form:

a′1, j1 x j1 + . . . + . . . + . . . + . . . + . . . + . . . = b′1
a′2, j2 x j2 + . . . + . . . + . . . + . . . = b′2

. . .
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

a′r, jr x jr + . . . + . . . = b′r
0 = b′r+1

.

.

.
.
.
.

.

.

.

0 = b′n



3. Integrals

In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas,
volumes, and their generalizations. Integration, the process of computing an integral, is one of
the two fundamental operations of calculus, the other being differentiation.

DEFINITE INTEGRAL

3.1 Definite integral
We will introduce the integral using an example. Consider the exponential function f (x) = ex.
We want to calculate the area A below the graph of f and between the equation lines (x = 0),
(x = 1) and the axis (Ox).

A

y = ex

x

y

0 1

1

We approximate this area by sums of areas of the rectangles located under the curve. More pre-

cisely, let n≥ 1 an integer; let’s cut our interval [0,1] using subdivision (0,
1
n
,
2
n
, . . . ,

i
n
, · · · , n−1

n
,1).
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We consider the «lower rectangles » R−i , each based on the interval
[ i−1

n
,

i
n

]
and for height

f
( i−1

n

)
= e(i−1)/n. The integer i varies from 1 to n. The area of R−i is «base × height » :( i

n
− i−1

n

)
× e(i−1)/n =

1
n

e
i−1

n .

y = ex

x

y

R−1R
−
2R
−
3R
−
4

0 1
4

2
4

3
4

1

1

y = ex

x

y

R+
1R

+
2R

+
3R

+
4

0 1
4

2
4

3
4

1

1

The sum of the areas of R−i is then calculated as the sum of a geometric sequence:

n

∑
i=1

e
i−1

n

n
=

1
n

n

∑
i=1

(
e

1
n
)i−1

=
1
n

1−
(
e

1
n
)n

1− e
1
n

=
1
n

e
1
n −1

(
e−1

)
−−−−→
n→+∞

e−1.

For the limit we recognized the expression of the type
ex−1

x
−−→
x→0

1 (avec ici x =
1
n

).

Let now be the «upper rectangles » R+
i , having the same base

[ i−1
n

,
i
n

]
but the height

f
( i

n

)
= ei/n. A similar calculation shows that

n

∑
i=1

e
i
n

n
→ e−1 when n→+∞.

The area A of our region is greater than the sum of the areas of the lower rectangles; and it
is lower to the sum of the areas of the upper rectangles.

y = ex

x

y

1

0 1n = 10

When considering smaller and smaller subdivisions (that is to say when we make n tend
towards +∞) then we obtain in the limit that the area A of our region is framed by two areas
which tend towards e−1. So the area of our region is A = e−1.

We will repeat this construction for any function f .
What will replace the rectangles will be step functions.
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If the limit of the areas below equals the limit of the areas above we call this common limit

the definite integral of f which we note
∫ b

a
f (x) dx.

However it is not always true that these limits are equal, the integral is therefore only defined
for integrable functions. Fortunately we will see that if the function f is continuous then it is
integrable.

Definition 3.1.1 Let [a,b] a closed interval bounded in R (−∞ < a < b < +∞). We call a
subdivision of [a,b] a finite sequence, strictly increasing, of numbers S = (x0,x1, . . . ,xn)

such that x0 = a and xn = b. In other words a = x0 < x1 < · · ·< xn = b.

xx1 x2 x3 x4 x5 x6x0

a

x7

b

Definition 3.1.2 A function f : [a,b] → R is a step function if there is a subdivision
(x0,x1, . . . ,xn) and real numbers c1, . . . ,cn such as for every i ∈ {1, . . . ,n} we get

∀x ∈]xi−1,xi[ f (x) = ci

In other words f is a constant function on each of the subintervals of the subdivision.

R The value of f at points xi of the subdivision is not imposed. It can be equal to that of
the interval which precedes or that which follows, or another arbitrary value. This doesn’t
matter because the area won’t change.

x

y

0
x0

c1

x1

c2

x2

c3

x3c4
x4

c5

x5

c6

x6

c7

x7

Definition 3.1.3 For a step function like above, its integral is the real
∫ b

a
f (x) dx defined by

∫ b

a
f (x) dx =

n

∑
i=1

ci(xi− xi−1)
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R Note that each term ci(xi−xi−1) is the area of the rectangle between the abscissa xi−1 and xi

and height ci. You just have to be careful that you count the area with a sign «+ » if ci > 0
and a sign «− » if ci < 0.

The integral of a step function is the area of the part located above of the abscissa axis (here
in red) minus the area of the part located below (in blue). The integral of a step function is
indeed a real number which measures the area between the curve of f and the x-axis.

This is the most important theoretical result of this chapter.

Theorem 3.1.1 If f : [a,b]→ R is continuous then f is integrable.

The idea is that continuous functions can be approached as closely as we want by step
functions, while keeping uniform error control over the interval.

A function f : [a,b]→ R is said to be piecewise continuous if there exists an integer n and a
subdivision (x0, . . . ,xn) such that f|]xi−1,xi[ is continuous, admits a finite limit on the right in xi−1

and a left limit in xi for all i ∈ {1, . . . ,n}.

R Piecewise continuous functions are integrable.

x

y

Here is a result which proves that we can also integrate functions which are not continuous
provided that the function is increasing (or decreasing).

Theorem 3.1.2 If f : [a,b]→ R is monotone then f is integrable.

PRIMITIVE / INTEGRAL

3.2 Indefinite integral
Definition 3.2.1 Let f : I→ R be a function defined on any interval I. We say that F : I→ R
is a primitive of f on I if F is a differentiable function on I checking F ′(x) = f (x) for all
x ∈ I.
The set of primitives of f is called indefinite integral of f .

■ Example 3.1 1. Let I = R and f : R→ R defined by f (x) = x2. Then F : R→ R defined

by F(x) =
x3

3
is a primitive of f . The function defined by F(x) =

x3

3
+1 is also a primitive

of f .
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2. Let I = [0,+∞[ and g : I→ R defined by g(x) =
√

x. Then G : I→ R defined by G(x) =
2
3

x
3
2 is a primitive of g on I. For all c ∈ R, the function G+ c is also a primitive of g.

■

Proposition 3.2.1 Let f : I→R a function and either F : I→R a primitive of f . Every primitive
of f is written G = F + c where c ∈ R.

Notations. We will note a primitive of f by
∫

f (t) dt or
∫

f (x) dx or
∫

f (u) du (the letters

t,x,u, ... are so-called silent letters, i.e. interchangeable).
The above proposition tells us that if F is a primitive of f then there exists a real c, such that

F =
∫

f (t) dt + c.

By derivation we easily prove the following result:

Proposition 3.2.2 Let F be a primitive of f and G be a primitive of g. Then F +G is a primitive
of f +g. And if λ ∈ R then λF is a primitive of λ f .

∫
ex dx = ex + c on R

∫
cosx dx = sinx+ c on R

∫
sinx dx =−cosx+ c on R

∫
xn dx =

xn+1

n+1
+ c (n ∈ N) on R

∫
xα dx =

xα+1

α +1
+ c (α ∈ R\{−1}) on ]0,+∞[

∫ 1
x

dx = ln |x|+ c on ]0,+∞[ or ]−∞,0[

∫
sinhx dx = coshx+ c,

∫
coshx dx = sinhx+ c on R

∫ dx
1+ x2 = arctanx+ c on R

∫ dx√
1− x2

=

 arcsinx+ c
π

2
− arccosx+ c

on ]−1,1[

∫ dx√
x2 +1

=

 Argshx+ c

ln
(
x+
√

x2 +1
)
+ c

on R

∫ dx√
x2−1

=

 Argchx+ c

ln
(
x+
√

x2−1
)
+ c

on x ∈]1,+∞[
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R
These primitives should be known by heart.

1. Here’s how to read this table. If f is the function defined on R by f (x) = xn then the

function: x 7→ xn+1

n+1
is a primitive of f on R. The primitives of f are the functions

defined by x 7→ xn+1

n+1
+c (for c any real constant). And we write

∫
xn dx =

xn+1

n+1
+c,

where c ∈ R.
2. Remember that the variable under the integral symbol is a silent variable. We can also

write
∫

tn dt =
xn+1

n+1
+ c.

3. We can find primitives with very different appearances, for example x 7→ arcsinx and

x 7→ π

2
−arccosx are two primitives of the same function x 7→ 1√

1− x2
. But of course

we know that arcsinx+ arccosx = π/2.

Theorem 3.2.3 Let f : [a,b]→ R be a continuous function. The function F : I→ R defined
by

F(x) =
∫ x

a
f (t) dt

is a primitive of f , i.e. F is differentiable and F ′(x) = f (x).
Therefore for any primitive F of f :∫ b

a
f (t) dt = F(b)−F(a)

3.3 Integration by parts – Change of variable
3.3.1 Integration by parts

To find a primitive of a function f we can have the chance to recognize that f is the derivative
of a well-known function. This is unfortunately very rarely the case, and we do not know the
primitives of most functions. However we will see two techniques that allow us to calculate
integrals and primitives: integration by parts and change of variable.

The integration by parts formula for primitives is:∫
u(x)v′(x) dx =

[
uv
]
−
∫

u′(x)v(x) dx.

and that of calculating definite integrals is∫ b

a
u(x)v′(x) dx =

[
uv
]b

a−
∫ b

a
u′(x)v(x) dx.

where
[
uv
]
= u(x)v(x) and

[
uv
]b

a = u(b)v(b)−u(a)v(a).
The use of integration by parts is based on the following idea: we do not know how to directly
calculate the integral of a function f written like a product f (x) = u(x)v′(x) but if we know how
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to calculate the integral of g(x) = u′(x)v(x) (which we hope is simpler) then by the formula of
integration by parts we will get the integral of f .

■ Example 3.2 • Calculation of
∫

arcsinx dx. To determine a primitive of arcsinx, note that: arcsinx =

1 · arcsinx. We set u = arcsinx, v′ = 1 (and therefore u′ =
1√

1− x2
and v = x) then

∫
1 · arcsinx dx =

[
xarcsinx

]
−
∫ x√

1− x2
dx

= xarcsinx+
√

1− x2 + c

• Calculation of
∫ 1

0
x2ex dx. Let u = x2 and v′ = ex to get :

∫ 1

0
x2ex dx =

[
x2ex]1

0−2
∫ 1

0
xex dx

We do a second integration by parts to calculate∫ 1

0
xex dx =

[
xex]1

0−
∫ 1

0
ex dx = 1

Then
∫ 1

0
x2ex dx = e−2.

■

3.3.2 Change of variable

Let I and J be non-singular intervals. Let u : I→ J and F : J→ R be differentiable functions.
The function F ◦u is then differentiable and (F ◦u)′ = u′×F ′ ◦u.
More lightly, this relation is denoted (F(u))′ = u′F ′(u) and thus we can write∫

u′F ′(u) = F(u)+C

Special cases:

•
∫

u′un =
1

n+1
un+1 +C for n ∈ N.

•
∫ u′

un =− 1
n−1

1
un−1 +C for n ∈ N,n ⩾ 2.

•
∫

u′uα =
1

α +1
uα+1 +C for α ∈ R−{−1}

and in particular
∫ u′√

u
= 2
√

u+C.

•
∫ u′

u
= ln |u|+C.

•
∫

u′eu = eu +C.

•
∫

u′ sinu =−cosu+C and
∫

u′ cosu = sinu+C

•
∫

u′ coshu = sinhu+C and
∫

u′ sinhu = coshu+C.

•
∫ u′

1+u2 = arctanu+C
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•
∫ ln t

t
dt =

∫
u′u =

1
2

u2 +C =
1
2
(ln t)2 +C.

•
∫ dt

t ln t
=
∫ u′

u
= ln | ln t|+C.

•
∫

tan t dt =
∫ sin t

cos t
dt =

∫
−u′

u
=− ln |cos t|+C.

•
∫ t

1+ t2 dt =
∫ u′

2u
=

1
2

ln(1+ t2)+C.

•
∫ t

1+ t4 dt =
∫ 1

2
u′

1+u2 =
1
2

arctan t2 +C.

Let u : I→ J derivable and f : J→ R having a primitive F .

To calculate
∫

u′(t) f (u(t)) dt, we write x = u(t), dx = u′(t)dt

and therefore ∫
u′(t) f (u(t)) dt =

∫
f (x) dx = F(x)+C = F (u(t))+C

During this manipulation, we say that we have achieved the change of variable defined by the
relation x = u(t).

■ Example 3.3 • Let’s calculate
∫

cos t sin tn dt

Let’s change the variable x = sin t for which dx = cos t dt. We obtain∫
cos t sin tn dt =

∫
xn dx =

1
n+1

xn+1 +C =
1

n+1
sinn+1 t +C

• Let’s calculate
∫ dt√

t + t
Let’s change the variable x =

√
t for which t = x2 and dt = 2x dx.

∫ dt√
t + t

=
∫ 2x dx

x+ x2 =
∫ 2 dx

1+ x
= 2ln |1+

√
t|+C

• Let’s calculate
∫ dt

1+ et

Let’s change the variable x = et for which dx = et dt = x dt.∫ dt
1+ et =

∫ dx
x(1+ x)

=
∫ 1

x
− 1

x+1
dx = ln

x
x+1

+C = ln
et

et +1
+C.

■

Theorem 3.3.1 Let u : I→ J of class C1 and f : J→ R continuous.
For all a,b ∈ I ∫ b

a
f (u(t))u′(t) dt =

∫ u(b)

u(a)
f (x) dx

R To use this formula, we write :
x = u(t), dx = u′(t)dt,
for t = a, x = u(a),
for t = b, x = u(b).
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This allows us to formally transform one integral into the other.
We then say that we have achieved the change of variable defined by the relation x = u(t).

■ Example 3.4 • Let’s calculate
∫ e

1

dt
t + t ln t

We proceed to change the variable x = ln t for which dx =
dt
t

. for t = 1, x = 0 and for
t = e, x = 1.
We obtain ∫ e

1

dt
t + t ln t

=
∫ 1

0

dx
1+ x

= ln2.

■

3.4 Integration of rational functions

Integration of rational fractions We know how to integrate a lot of simple functions. For

example all polynomial functions: if f (x) = a0 + a1x+ a2x2 + · · ·+ anxn then
∫

f (x) dx =

a0x+a1
x2

2
+a2

x3

3
+ · · ·+an

xn+1

n+1
+ c.

You should be aware, however, that many functions are not integrable using simple functions.

For example if f (t) =
√

a2 cos2 t +b2 sin2 t then the integral
∫ 2π

0
f (t) dt can’t be expressed

as sum, product, inverse or composition of usual functions. In fact this integral is worth the length
of an ellipse of parametric equation (acos t,bsin t) ; so there is no formula for the perimeter of
an ellipse (unless a = b in which case the ellipse is a circle!).

ab
////

−
−

We first want to integrate the rational fractions

f (x) =
αx+β

ax2 +bx+ c

with α,β ,a,b,c ∈ R, a ̸= 0 and (α,β ) ̸= (0,0).
First case. The denominator ax2 +bx+ c has two distinct real roots x1,x2 ∈ R.

Then f (x) is also written f (x) =
αx+β

a(x− x1)(x− x2)
and there exist numbers A,B ∈ R such

that f (x) =
A

x− x1
+

B
x− x2

. So we have

∫
f (x) dx = A ln |x− x1|+B ln |x− x2|+ c

on each of the intervals ]−∞,x1[, ]x1,x2[, ]x2,+∞[ (if x1 < x2).
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Let’s determine
∫ dx

1− x2 on ]−∞,−1[, ]−1,1[ or ]1,+∞[.

We have the decomposition into simple elements

1
1− x2 =

−1
(x−1)(x+1)

=
A

x−1
+

B
x+1

=
(A+B)x+A−B
(x−1)(x+1)

By identification, we find A+B = 0 and A−B =−1.

Then A =−1
2

and B =
1
2

. As a result

∫ dx
1− x2 =

1
2

∫ dx
x+1

− 1
2

∫ dx
x−1

=
1
2

ln |x+1|− 1
2

ln |x−1|+C.

Second case. The denominator ax2 +bx+ c has a double root x0 ∈ R.

Then f (x) =
αx+β

a(x− x0)2 and there exist numbers A,B ∈ R such as f (x) =
A

(x− x0)2 +
B

x− x0
.

We then have ∫
f (x) dx =− A

x− x0
+B ln |x− x0|+ c

on each of the intervals ]−∞,x0[, ]x0,+∞[.

Third case. The denominator ax2 +bx+ c does not have a real root. Let’s see how to do it
with an example.

Let f (x) =
x+1

2x2 + x+1
. Firstly, we show a fraction of the type

u′

u
(which we know how to

integrate into ln |u|).

f (x) =
(4x+1)1

4 −
1
4 +1

2x2 + x+1
=

1
4
· 4x+1

2x2 + x+1
+

3
4
· 1

2x2 + x+1

We can integrate the fraction
4x+1

2x2 + x+1
:

∫ 4x+1
2x2 + x+1

dx =
∫ u′(x)

u(x)
dx = ln

∣∣2x2 + x+1
∣∣+ c

Let’s take care of the other part
1

2x2 + x+1
, we will write it in the form

1
u2 +1

(admiting as

primitive arctanu).

1
2x2 + x+1

=
1
2

1
(x+ 1

4)
2− 1

16 +
1
2

=
1

2(x+ 1
4)

2 + 7
8

=
8
7
· 1

8
72(x+ 1

4)
2 +1

=
8
7
· 1( 4√

7
(x+ 1

4)
)2

+1
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We pose the change of variable u =
4√
7
(x+

1
4
) (and so du =

4√
7

dx) to find

∫ dx
2x2 + x+1

=
∫ 8

7
dx( 4√

7
(x+ 1

4)
)2

+1
=

8
7

∫ du
u2 +1

·
√

7
4

=
2√
7

arctanu+ c =
2√
7

arctan
(

4√
7

(
x+

1
4
))

+ c .

Eventually :∫
f (x) dx =

1
4

ln
(
2x2 + x+1

)
+

3
2
√

7
arctan

(
4√
7

(
x+

1
4
))

+ c

Let
P(x)
Q(x)

be a rational fraction, where P(x),Q(x) are polynomials with real coefficients.

Then the fraction
P(x)
Q(x)

is written as the sum of a polynomial E(x) ∈ R[x] and simple elements

of one of the following forms:

γ

(x− x0)k or
αx+β

(ax2 +bx+ c)k with b2−4ac < 0

where α,β ,γ,a,b,c ∈ R and k ∈ N\{0}.
• We know how to integrate the polynomial E(x).
• Integration of the simple element

γ

(x− x0)k .

– if k = 1 then
∫

γ dx
x− x0

= γ ln |x− x0|+ c0 (on ]−∞,x0[ or ]x0,+∞[).

• – if k ≥ 2 then
∫

γ dx
(x− x0)k = γ

∫
(x− x0)

−k dx =
γ

−k+1
(x− x0)

−k+1 + c0 (on ]−

∞,x0[ or ]x0,+∞[).

• integration of the Simple element
αx+β

(ax2 +bx+ c)k . We write this fraction in the form

αx+β

(ax2 +bx+ c)k = γ
2ax+b

(ax2 +bx+ c)k +δ
1

(ax2 +bx+ c)k

and we proceed according to the value of the parameter k as follows.

1. If k = 1, we have
∫ 2ax+b

ax2 +bx+ c
dx =

∫ u′(x)
u(x)

dx = ln |u(x)|+c0 = ln |ax2+bx+c|+c0.

2. If k≥ 2, then
∫ 2ax+b

(ax2 +bx+ c)k dx=
∫ u′(x)

u(x)k dx=
1

−k+1
u(x)−k+1+c0 =

1
−k+1

(ax2+

bx+ c)−k+1 + c0.

3. if k = 1, then
∫ 1

ax2 +bx+ c
dx. By changing the variable u = px+ q we go back to

calculate a primitive of the type
∫ du

u2 +1
= arctanu+ c0.
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4. If k≥ 2, calculating
∫ 1

(ax2 +bx+ c)k dx, We proceed to the change of variable u= px+q

to reduce the calculation into that of Ik =
∫ du

(u2 +1)k . An integration by parts allows us

to go from Ik to Ik−1.

3.5 Integration of trigonometric functions

We can also calculate the primitives of the form
∫

P(cosx,sinx) dx or of the form
∫ P(cosx,sinx)

Q(cosx,sinx)
dx

when P and Q are polynomials, reducing to integrating a rational fraction.
There are two methods:
• Bioche’s rules are quite effective but won’t always work;
• changing variable t = tan

x
2

works all the time but leads to more calculations.

We note ω(x)= f (x) dx. We then have ω(−x)= f (−x) d(−x)=− f (−x) dx and ω(π−x)=
f (π− x) d(π− x) =− f (π− x) dx.

• If ω(−x) = ω(x) then we proceed to the change of variable u = cosx.
• if ω(π− x) = ω(x) then we proceed to the change of variable u = sinx.
• If ω(π + x) = ω(x) then we proceed to the change of variable u = tanx.

■ Example 3.5 Calculation of the primitive
∫ cosx dx

2− cos2 x
.

We note
ω(x) =

cosx dx
2− cos2 x

.

Since

ω(π− x) =
cos(π− x) d(π− x)

2− cos2(π− x)
=

(−cosx) (−dx)
2− cos2 x

= ω(x)

then the appropriate variable change is u = sinx for which du = cosx dx. So:∫ cosx dx
2− cos2 x

=
∫ cosx dx

2− (1− sin2 x)

=
∫ du

1+u2 =
[

arctanu
]

= arctan(sinx)+ c .

This method allows us to express sin, cosine and tangent in terms of tan
x
2

.

with t = tan
x
2

we have

cosx =
1− t2

1+ t2 sinx =
2t

1+ t2 tanx =
2t

1− t2

and dx =
2 dt

1+ t2 .

Calculation of the integral
∫ 0

−π/2

dx
1− sinx

.
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The change of variable t = tan
x
2

defines a bijection from [−π

2
,0] into [−1,0] (for x =−π

2
,

t =−1 and for x = 0, t = 0). In addition we have sinx =
2t

1+ t2 and dx =
2 dt

1+ t2 .

∫ 0

− π

2

dx
1− sinx

=
∫ 0

−1

2 dt
1+t2

1− 2t
1+t2

= 2
∫ 0

−1

dt
1+ t2−2t

= 2
∫ 0

−1

dt
(1− t)2 = 2

[
1

1− t

]0

−1
= 2
(
1− 1

2
)
= 1

■



4. Differential equations

When a body falls in free fall without friction, it is only subject to its weight P⃗. By the
fundamental principle of mechanics: P⃗ = ma⃗. All vectors are vertical so mg = ma, where g is
the gravitational constant, a the vertical acceleration and m the mass. We obtain a = g. The
acceleration being the derivative of the speed with respect to time, we obtain:

v(t)
t

= g

It is easy to deduce the speed by integration: v(t) = gt (assuming initial velocity is zero), i.e.
that the speed increases linearly over time. Since the speed is the derivative of the position, we

have v(t) =
x(t)

t
, so by a new integration we obtain x(t) =

1
2

gt2 (assuming the initial position is
zero).
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x

0
P⃗

x

0

P⃗

F⃗

The case of a parachutist is more complicated. The previous model is not applicable because
it does not take friction into account. The parachute makes undergo a friction force opposite to its
speed. We assume that the friction is proportional to the speed: F =− f mv ( f is the coefficient
of friction). Thus the fundamental principle of mechanics becomes mg− f mv = ma, which leads
to the relationship :

v(t)
t

= g− f v(t)

It is a relationship between the speed v and its derivative: it is a differential equation. It is not
easy to find which function v is appropriate.

GENERALITIES

4.1 Generalities
A differential equation is an equation:

• whose unknown is a function (generally denoted y(x) or simply y);
• in which appears some of the derivatives of the function (first derivative y′, or higher order

derivatives y′′, y(3), . . .).

■ Example 4.1 — Easy to Solve Differential Equations. Find at least one function, solution of
following differential equations:

y′ = sinx y(x) = -cosx+ k where k ∈ R
y’ = 1 + ex y(x) = x + ex + k where k ∈ R

y′ = y y(x) = k ex where k ∈ R
y’ = 3y y(x) = ke3x where k ∈ R
y” = cosx y(x) = -cosx+ax+b where a,b ∈ R
y” = y y(x) = aex +be−x where a,b ∈ R

■

Definition 4.1.1 • A differential equation of order n is an equation of the form

F
(

x,y,y′, . . . ,y(n)
)
= 0 (E)

where F is a function of (n+2) variables.
• A solution of such an equation on an interval I ⊂ R is a function y : I→ R which is n
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times differentiable and which verifies the equation (E).

■ Example 4.2 1. Let the differential equation y′= 2xy+4x. Check that y(x) = k exp(x2)−2
is a solution on R, this for all k ∈ R.

2. Consider the differential equation x2y′′− 2y+ 2x = 0. Check that y(x) = kx2 + x is a
solution on R, for all k ∈ R.

■

R
• It is customary for differential equations to write y instead of y(x), y′ instead of

y′(x),. . . We therefore note «y′ = sinx » which means «y′(x) = sinx ».
• You have to get used to changing names for functions and variables. For example
(x′′)3 + t(x′)3 +(sin t)x4 = et is a differential equation of order 2, whose unknown is
a function x which depends on the variable t. We are therefore looking for a function
x(t), twice differentiable, which satisfies (x′′(t))3 + t(x′(t))3 +(sin t)(x(t))4 = et .

• Searching for a primitive already means solving the differential equation y′ = f (x).
This is why we often find «integrating the differential equation » to «find the solutions
of the differential equation ».

• The notion of interval in solving a differential equation is fundamental. If we change
the interval, we can very well obtain other solutions.

Definition 4.1.2 A differential equation with separate variables is an equation of the type:

y′ = g(x)/ f (y) or y′ f (y) = g(x)

R
Such an equation is solved by calculating primitives. If G(x) is a primitive of g(x) then
G′(x) = g(x). If F(x) is a primitive of f (x) then F ′(x) = f (x), but above all, by derivation
of a composition,

(
F(y(x))

)′
= y′(x)F ′(y(x)) = y′ f (y). Thus the differential equation

y′ f (y) = g(x) is rewritten
(
F(y(x))

)′
= G′(x) which is equivalent to an equality of functions:

F(y(x)) = G(x)+ c.

■ Example 4.3 Here is a concrete example:

x2y′ = e−y

We start by separating the variables x on one side and y on the other: y′ey =
1
x2 (assuming x ̸= 0).

We integrate on both sides:

ey =−1
x
+ c (c ∈ R)

Which allows us to obtain y (assuming −1
x
+ c > 0):

y(x) = ln
(
−1

x
+ c
)



4.1 Generalities 49

which is a solution on each interval I where it is defined and differentiable. This interval depends

on the constant c : if c < 0, I =]
1
c
,0[ ; if c = 0, I =]−∞,0[ ; if c > 0, I =]

1
c
,+∞[∪ ]−∞,0[. ■

4.1.1 Linear differential equation

Definition 4.1.3 • A differential equation of order n is linear if it is of the form

a0(x)y+a1(x)y′+ · · ·+an(x)y(n) = g(x)

where the ai and g are real continuous functions on an interval I ⊂ R.
The term linear roughly means that there is no exponent for the terms y,y′,y′′, . . .

• A linear differential equation is homogeneous, or without second member, if the
function g above is the null function:

a0(x)y+a1(x)y′+ · · ·+an(x)y(n) = 0

• A linear differential equation is with constant coefficients if the ai functions above are
constant:

a0y+a1y′+ · · ·+any(n) = g(x)

where the ai are real constants and g a continuous function.

■ Example 4.4 1. y′+5xy = ex is a first order linear differential equation with right side.
2. y′+5xy = 0 is the homogeneous differential equation associated with the previous one.
3. 2y′′−3y′+5y = 0 is a second order linear differential equation with constant coefficients,

without a second member.
4. y′2− y = x or y′′ · y′− y = 0 are not linear differential equations.

■

Proposition 4.1.1 — Principle of linearity. if y1 and y2 are solutions of the homogeneous linear
differential equation

a0(x)y+a1(x)y′+ · · ·+an(x)y(n) = 0 (E0)

then, for every λ ,µ ∈ R, λy1 +µy2 is also solution of this equation.

R It’s a simple check. We can reformulate the proposition by saying that the set of solutions
forms a vector space.

To solve a linear differential equation with right hand side

a0(x)y+a1(x)y′+ · · ·+an(x)y(n) = g(x), (E)

We often break down the resolution into two steps:

• find a particular solution y0 of the equation (E),

• find the set Sh of solutions y of the associated homogeneous equation

a0(x)y+a1(x)y′+ · · ·+an(x)y(n) = 0 (E0)
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which makes it possible to find all the solutions(E)

Proposition 4.1.2 — Principle of superposition. The set of all solutions S of (E) is formed of

y0 + y with y ∈Sh.

In other words, we find all the solutions by adding a particular solution to the solutions of the
homogeneous equation. This is an immediate consequence of the linear nature of the equations.

FIRST ORDER LINEAR DIFFERENTIAL
EQUATIONS

4.2 First order linear differential equations
Definition 4.2.1 A first order linear differential equation is an equation of the type :

y′ = a(x)y+b(x) (E)

where a and b are functions defined on an open interval I of R.

In the following we will assume that a and b are continuous functions on I. We can consider
the form : α(x)y′+β (x)y = γ(x). We will then ask that α(x) ̸= 0 for all x ∈ I. Division by α

allows us to find the form (E).

We will start by solving the case where a is a constant and b = 0. Then a will be a function
(and always b = 0). We will end with the general case where a and b are two functions.

Theorem 4.2.1 Let a be a real number. Let the differential equation be :

y′ = ay (E)

The solutions of (E), on R, are the functions y defined by:

y(x) = keax

where k ∈ R is any constant.

Explanation : rewriting the differential equation in the form
y′

y
= a and after integration, we

find : ln |y(x)|= ax+b . By the exponential on both sides: |y(x)|= eax+b i.e : y(x) =±ebeax.

Let k =±eb to get the required form of the solution.
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x

y

Cas a > 0 k > 0

k = 0

k < 0

x

y

Cas a < 0k > 0

k = 0

k < 0

■ Example 4.5 Solve the differential equation:

3y′−5y = 0

We write this equation in the form y′ =
5
3

y. Its solutions, on R, are therefore of the form:

y(x) = ke
5
3 x, where k ∈ R. ■

R
• The differential equation (E) admits an infinity of solutions (since we have an infinite

choice of the constant k).
• The constant k can be zero. In this case, we obtain the «null solution »: y = 0 on R,

which is a trivial solution from the differential equation.
• The theorem 4.2.1 can also be interpreted as follows: if y0 is a non null solution of the

differential equation (E), then all other solutions y are multiples of y0.

The following theorem states that, when a is a function, solve the differential equation
y′ = a(x)y amounts to determining a primitive A of a (which is not always explicitly possible).

Theorem 4.2.2 Let a : I→ R be a continuous function. Let A : I→ R be a primitive of a. Let
the differential equation be :

y′ = a(x)y (E)

The solutions on I of (E) are the functions y defined by :

y(x) = keA(x)

where k ∈ R is any constant.

If a(x) = a is a constant function, then a primitive is for example A(x) = ax and we find the
solutions of theorem 4.2.1.

A quick proof of the theorem 4.2.2 is as follows :

y′

y
= a(x) ⇐⇒ ln |y(x)|= A(x)+b ⇐⇒ |y(x)|= eA(x)+b

⇐⇒ y(x) =±ebeA(x) ⇐⇒ y(x) = keA(x) with k =±eb
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A rigorous proof (since we avoid dividing by something that could be null):

y(x) solution of (E) : y′(x)−a(x)y(x) = 0

⇐⇒ e−A(x)(y′(x)−ay(x)
)
= 0

⇐⇒
(
y(x)e−A(x))′ = 0

⇐⇒ ∃k ∈ R y(x)e−A(x) = k

⇐⇒ ∃k ∈ R y(x) = keA(x)

■ Example 4.6 How to solve the differential equation x2y′ = y? We place ourselves on the
interval I+ =]0,+∞[ or I− =]−∞,0[. The equation becomes

y′ =
1
x2 y.

So
a(x) =

1
x2 ,

of which a primitive is

A(x) =−1
x
.

So the solutions are
y(x) = ke−

1
x ,

where k ∈ R. ■

We are left with the general case of the linear differential equation of order 1 with second
member :

y′ = a(x)y+b(x) (E)

where a : I→ R and b : I→ R are continuous functions.
The associated homogeneous equation is:

y′ = a(x)y (E0)

There is no new formula to learn for this case. It is enough to apply the principle of
superposition: the solutions of (E) are obtained by adding to a particular solution of (E) the
solutions of (E0).

Proposition 4.2.3 If y0 is a solution of (E), then the solutions of (E) are the functions y : I→ R
defined by:

y(x) = y0(x)+ keA(x) with k ∈ R

where x 7→ A(x) s a primitive of x 7→ a(x).

R The search for the general solution of (E) is reduced to looking for a particular solution.
Sometimes this is done by noticing an obvious solution.
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■ Example 4.7 For example, the differential equation y′ = 2xy+4x has the particular solution
y0(x) =−2; therefore the set of solutions of this equation are the y(x) =−2+kex2

, where k ∈R.
The general solution of (E0) y′ = a(x)y is given by y(x) = keA(x), with k ∈ R a constant. ■

Proposition 4.2.4 The method of variation of constants consists of looking for a particular
solution in the form y0(x) = k(x)eA(x), where k is now a function to be determined so that y0 is a
solution of (E) y′ = a(x)y+b(x).

y′0(x) = a(x)k(x)eA(x)+ k′(x)eA(x) = a(x)y0(x)+ k′(x)eA(x)

Therefore y′0(x)−a(x)y0(x) = k′(x)eA(x) .
Then y0 is a solution of (E) if and only if

k′(x)eA(x) = b(x) ⇐⇒ k′(x) = b(x)e−A(x) ⇐⇒ k(x) =
∫

b(x)e−A(x)x.

which gives a particular solution y0(x) =
(∫

b(x)e−A(x)x
)

eA(x) of (E) on I. The general solution

of (E) is given by
y(x) = y0(x)+ keA(x), k ∈ R.

■ Example 4.8 Let the equation y′+ y = ex +1. The homogeneous equation is y′ =−y whose
solutions are the y(x) = ke−x, k ∈ R.

Let’s look for a particular solution with the method of variation of constants : we note
y0(x) = k(x)e−x. We must find k(x) so that y0 verifies the equation differential y′+ y = ex +1.

y′0 + y0 = ex +1 ⇐⇒
(
k′(x)e−x− k(x)e−x)+ k(x)e−x = ex +1

⇐⇒ k′(x)e−x = ex +1

⇐⇒ k′(x) = e2x + ex ⇐⇒ k(x) =
1
2

e2x + ex + c

We set c = 0 (any value is suitable):

y0(x) = k(x)e−x =

(
1
2

e2x + ex
)

e−x =
1
2

ex +1

We have our special solution! General solutions of the equation y′+ y = ex +1 are therefore:

y(x) =
1
2

ex +1+ ke−x, k ∈ R.

■

SPECIFIC DIFFERENTIAL EQUATIONS

4.2.1 Specific Differential Equations
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Definition 4.2.2 — Bernoulli’s equation
. It concerns differential equations of the form

y′(x) = a(x)y+b(x)yα , α ∈ R\{0,1}.

We seek solutions that do not vanish

y′

yα
=

a(x)
yα−1 +b(x).

We set z = y1−α . We obtain
1

1−α
z′ = a(x)z+b(x).

We obtain a first-order linear equation in z, which we know how to solve.

■ Example 4.9 So, to solve
y′ = y3− y

x
.

We set z =
1
y2 . Therefore, we obtain

−z′

2
= 1− z

x
=⇒ z(x) = 2x+λx2,

which ultimately yields

y(x) =± 1√
2x+λx2

.

■

Definition 4.2.3 — Riccati’s equation. It concerns differential equations of the form

y′(x) = a(x)y2 +b(x)y+ c(x).

If a particular solution y0 is known, then we can solve this differential equation. Indeed, we
set y = y0 + z and by substitution, we find

z′ = (2a(x)y0(x)+b(x))z+a(x)z2.

Thus, we obtain a Bernoulli equation, which we can solve.

R
The term homogeneous differential equation has two entirely distinct and independent
meanings. (One already seen previously)

Definition 4.2.4 — First-order homogeneous differential equation of degree n. A first-
order but not necessarily linear differential equation is said to be homogeneous of degree n if
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it can be written in the form:
dy
dx

= xnh
(y

x

)
.

The most studied case is when n = 0, and solving such an equation, using the substitution

u(x) =
y(x)

x
, transforms the equation

dy
dx

= h
(y

x

)
into a separable variable equation:

u′(x)
h(u(x))−u(x)

=
1
x
.

SECOND ORDER LINEAR DIFFERENTIAL
EQUATIONS WITH CONSTANT COEFFICIENTS

4.3 Second order linear differential equation with constant coefficients
Definition 4.3.1 A second order linear differential equation with constant coefficients, is an
equation of the form

ay′′+by′+ cy = g(x) (E)

where a,b,c ∈ R, a ̸= 0 and gis a continuous function on an open interval I.
The equation

ay′′+by′+ cy = 0 (E0)

is called the homogeneous equation associated with (E).

4.3.1 The homogeneous equation case

The structure of solutions to the equation is very simple:

Theorem 4.3.1 The set of solutions of the homogeneous equation (E0) is an R-vectorial space
of dimension 2.

We are looking for a solution to (E0) Under the form y(x) = erx where r ∈ C is a constant to
be determined. We find

ay′′+by′+ cy = 0

⇐⇒ (ar2 +br+ c)erx = 0

⇐⇒ ar2 +br+ c = 0.

Definition 4.3.2 The equation ar2 +br+ c = 0 is called the characteristic equation associ-
ated with (E0).

Let ∆ = b2−4ac, the discriminant of the characteristic equation associated with(E0).

Theorem 4.3.2 1. If ∆ > 0, the characteristic equation has two distinct real roots r1 ̸= r2

and the solutions of (E0) are

y(x) = λer1x +µer2x where λ ,µ ∈ R.
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2. If ∆ = 0, the characteristic equation has a double root r0 and the solutions of (E0) are

y(x) = (λ +µx)er0x where λ ,µ ∈ R.

3. If ∆ < 0, the characteristic equation has two complex roots r1 = α +β , r2 = α−β and
the solutions of (E0) are

y(x) = eαx(
λ cos(βx)+µ sin(βx)

)
where λ ,µ ∈ R.

■ Example 4.10 1. Solve on R the equation y′′− y′−2y = 0.
The characteristic equation is r2− r− 2 = 0, which is also written (r + 1)(r− 2) = 0
(∆ > 0). Hence, for every x ∈ R, y(x) = λe−x +µe2x, with λ ,µ ∈ R.

2. Solve on R the equation y′′−4y′+4y = 0.
The characteristic equation is r2−4r+4 = 0, let (r−2)2 = 0 (∆ = 0). Therefore, for all
x ∈ R, y(x) = (λx+µ)e2x, with λ ,µ ∈ R.

3. Solve on R the equation y′′−2y′+5y = 0.
The characteristic equation is r2−2r+5 = 0. It admits two complex solutions: r1 = 1+2
and r2 = 1−2 (∆ < 0). Therefore, for all x ∈ R, y(x) = ex(λ cos(2x)+ µ sin(2x)), with
λ ,µ ∈ R.

■

4.3.2 Equation with second member

We move on to the general case of a linear differential equation of order 2, with constant
coefficients, but with a second member g which is a continuous function on an open interval
I ⊂ R :

ay′′+by′+ cy = g(x) (E)

For this type of equation, we admit the following theorem: [Cauchy-Lipschitz theorem]
For every x0 ∈ I and any couple (y0,y1) ∈ R2, the equation (E) admits a unique solution y on I
satisfying the initial conditions:

y(x0) = y0 and y′(x0) = y1.

Proposition 4.3.3 — Principle of superposition. General solutions of the equation (E) are
obtained by adding the general solutions of the homogeneous equation (E0) to a particular
solution of (E).

Second member of the type eαxP(x).
If g(x) = eαxP(x), with α ∈ R and P ∈ R[X ], then we look for a particular solution in the

form y0(x) = eαxxmQ(x), where Q is a polynomial of same degree as P with:
• y0(x) = eαxQ(x) (m = 0), if α is not a root of the characteristic equation,
• y0(x) = xeαxQ(x) (m = 1), if α is a simple root of the characteristic equation,
• y0(x) = x2eαxQ(x) (m = 2), if α is a double root of the characteristic equation.
Second member of the type eαx(P1(x)cos(βx)+P2(x)sin(βx)

)
.

If g(x) = eαx(P1(x)cos(βx)+P2(x)sin(βx)
)
, where α,β ∈ R and P1,P2 ∈ R[X ], we seek a

particular solution in the form :
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• y0(x) = eαx(Q1(x)cos(βx)+Q2(x)sin(βx)
)
, if α +β is not a root of the characteristic

equation,
• y0(x) = xeαx(Q1(x)cos(βx) + Q2(x)sin(βx)

)
, if α + β is a root of the characteristic

equation.
In both cases, Q1 and Q2 are two polynomials of degree n = max{degP1,degP2}.

■ Example 4.11 Solve differential equations :

(E0) y′′−5y′+6y = 0 (E1) y′′−5y′+6y = 4xex

1. Equation (E0). The characteristic equation is r2−5r+6 = (r−2)(r−3) = 0, with two
distinct roots r1 = 2,r2 = 3. Therefore, the set of all solutions of (E0) is

{
λe2x +µe3x |

λ ,µ ∈ R
}

.
2. Equation (E1).

(a) We seek a particular solution to (E1) in the form y0(x) = (ax+b)ex. When we inject
y0 into the equation (E1), we obtain :

(ax+2a+b)ex−5(ax+a+b)ex +6(ax+b)ex = 4xex

⇐⇒ (a−5a+6a)x+2a+b−5(a+b)+6b = 4x

⇐⇒ 2a = 4 and −3a+2b = 0 (a = 2 and b = 3)

Then y0(x) = (2x+3)ex.
(b) The set of solutions is

{
(2x+3)ex +λe2x +µe3x | λ ,µ ∈ R

}
.

■



5. Functions of several variables

In this chapter, we present the fundamental concepts of the analysis of functions of several
variables.
A numerical function of several real variables is a function whose domain E is a subset of Rn.
The codomain F can be R or Rp. The second case can be reduced to the first case by considering
that it actually consists of p functions from Rn to R called coordinate functions.

To model many phenomena, single-variable functions are not sufficient; we often need
functions of several variables.

■ Example 5.1 For a sample of a mole of Van der Waals gas, the pressure P of the gas is a
function of two variables: its temperature T , and the volume V occupied by this sample. Indeed,
we have:

P(T,V ) =
RT

V −b
− a

V 2

where a, b, and R are constants (a and b depend on the gas considered, R is a universal constant).
■
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■ Example 5.2 The total energy E of a pendulum is a function of two variables: the angle θ that
the pendulum makes with the vertical, and its angular velocity θ̇ . Indeed, we have:

E(θ , θ̇) =
1
2

mℓ2
θ̇

2 +mgℓ(1− cosθ)

where m, g, and ℓ are constants (the mass of the pendulum, the universal gravitational constant,
and the length of the pendulum’s rod).

■

DEFINITION, LIMIT, CONTINUITY, AND
PARTIAL DERIVATIVES

5.1 Definition, Limit, Continuity, and Partial Derivatives

5.1.1 Functions of Two Variables with Real Values
Definition 5.1.1 Let D be a subset of R2, meaning a set of pairs of real numbers (x,y).
A function of two variables defined on D is the process of associating a unique real number to
each pair (x,y) in D. It is generally denoted as f (x,y) = z.

R Just as for single-variable functions, we can talk about bounded, upper-bounded, lower-
bounded functions of two variables, and we can also talk about extrema of a function of two
variables.
However, there is no defined notion of monotonicity for functions of two variables.
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■ Example 5.3 Let f : R2\{(0,0)}→ R be the rational function defined by

f (x,y) =
xy

x2 + y2

The function f is bounded by 1/2. ■

■ Example 5.4 Let g : R2→ R be the polynomial function defined by

f (x,y) = x2 + y2

The function g has a minimum at (0,0). ■

Definition 5.1.2 [Graphical Representation] Let f be a function of two variables defined on
a domain D. The set of points with coordinates (x,y,z) where z = f (x,y), for (x,y) ranging
over D, is called the surface of equation z = f (x,y).
To represent it, we plot the points with coordinates M(x,y, f (x,y)).

■ Example 5.5 Representation of the surface of equation z = x2 + y2

■

5.1.2 Limit
Definition 5.1.3 Let f : D⊂ R2→ R be a function defined in the neighborhood of (a1,a2).
We say that f tends to ℓ ∈ R at (a1,a2) if

∀ε > 0,∃η > 0,∀(x1,x2) ∈ D,∥(x1,x2)− (a1,a2)∥⩽ η =⇒ | f (x1,x2)− ℓ|⩽ ε

and we denote lim
(x1,x2)→(a1,a2)

f (x1,x2) = ℓ

R
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• The quantity ∥(x1,x2)− (a1,a2)∥ denotes the distance between the variable (x1,x2)

and the point (a1,a2). This distance can be measured by several norms such as:

∥(x1,x2)− (a1,a2)∥=
√

(x1−a1)2 +(x2−a2)2.

• This definition, as well as those of other cases (+∞ ....), are analogous to the definitions
of limits of real functions of a real variable.

• This approach does not consist of making x1 tend to a1 and then x2 tend to a2, which
would be incorrect. Here, it is the pair (x1,x2) that tends to (a1,a2), so in practice we
often use the following theorem:

Theorem 5.1.1 Let f be a function from R2 to R and ℓ∈R. Let X = (x1,x2) and A = (a1,a2).
If there exists a function g such that | f (X)− ℓ|⩽ g(X) →

X→A
= 0, then:

lim
X→A

f (X) = ℓ

■ Example 5.6 Let’s study lim
(x,y)→(0,0)

x3 + y3

x2 + y2∣∣∣∣x3 + y3

x2 + y2

∣∣∣∣⩽ ∣∣∣∣ x3

x2 + y2

∣∣∣∣+ ∣∣∣∣ y3

x2 + y2

∣∣∣∣⩽ ∣∣∣∣x3

x2

∣∣∣∣+ ∣∣∣∣y3

y2

∣∣∣∣⩽ |x|+ |y| −→
(x,y)→(0,0)

0

■

■ Example 5.7 Let’s study lim
(x,y)→(0,0)

xy√
x2 + y2∣∣∣∣∣ xy√

x2 + y2

∣∣∣∣∣⩽ 1
2

√
x2 + y2 −→

(x,y)→(0,0)
0

■

5.1.3 Continuity
Definition 5.1.4 We say that f : D ⊂ R2→ R is continuous at a point a = (a1,a2) ∈ D if
f →

a
f (a).

We say that f is continuous on D if f is continuous at every point a ∈ D.
We denote C (D,R) the set of real functions defined and continuous on D.

■ Example 5.8 Constant functions and polynomial functions are continuous.

The function (x,y)→ xy+ ysinx
x2 + y2 +1

is continuous on R2 (by operations on continuous func-

tions).
■

■ Example 5.9 The case of discontinuity i.e. divergence of the limit If f is a function from R2

to R discontinuous at x0 ∈ R2, how will this behavior be characterized?
In the case of a single variable, discontinuity occurs when the left-hand limit is different from
the right-hand limit. However, in two dimensions on a plane, there are infinitely many ways to
approach a. If a = (0,0) for example : ■
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R
To demonstrate that a function f of two variables is discontinuous at a ∈ R2, it is necessary
to find two different directions leading to different limits, or alternatively, to cause the
function to diverge in a particular direction.

R A parametric arc is used to represent curves in the plane or space. We use a parameter t.
The curve is given by the points M(t) with coordinates (x(t),y(t)), where x and y are two
functions of t and by an interval I, such that t ∈ I.
In general, x(t) and y(t) will often denote polynomial functions.
The idea is that we should be able to make (x(t),y(t)) converge to the point of discontinuity
as t tends to a certain value, usually 0.

■ Example 5.10 Let’s study the continuity of the function f defined by

f (x,y) =


(x+ y)2

x2 + y2 if (x,y) ̸= (0,0)

1, otherwise

f is continuous on R2\{(0,0)} by operations on continuous functions.
However, along the direction (x(t),y(t)) = (t, t) we have

f (t, t) →
t→0

2 ̸= f (0,0)

so f is not continuous at (0,0). ■
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■ Example 5.11 Let’s study the continuity extension at (0,0) of the function

f (x,y) =
x2− y2

x2 + y2 defined on R2\{(0,0)}

We have f (t,0) = 1 →
t→0

1 and f (0, t) =−1 →
t→0
−1.

We can assert the non-existence of the studied limit, and consequently f cannot be extended by
continuity at (0,0). ■

R
If f is a function of two variables and we want to study the possible limit of f (x,y) as
(x,y)→ (x0,y0), several cases may arise:

• If f is continuous at (x0,y0): we prove convergence using an enclosure or other tech-
niques not discussed here, such as the passage to polar coordinates or Taylor expansion.

• If f is discontinuous at (x0,y0): it is a matter of finding the right parametric arcs that
will prove that in two different directions, f has two different limits.

5.1.4 Partial Derivatives
Definition 5.1.5 Let f : D⊂ R2→ R and a = (a1,a2) ∈ D.
The first partial application of f at point a is the function of a real variable f (.,a2) : x→
f (x,a2).
The second partial application of f at point a is the function of a real variable f (a1, .) : y→
f (a1,y).

■ Example 5.12 The first partial application of f : (x,y)→ x2 + y2 at point (2,3) is the function
f (.,3) : x→ x2 +9. ■

Proposition 5.1.2 If f : D⊂ R2→ R is continuous then the partial applications of f at every
point in D are continuous.

R The converse is false, the continuity of partial applications does not ensure the continuity of
the function.

R
The definition of the derivative of a single-variable function can be applied to the partial
applications of a function with two (or more) variables.
The partial derivatives of a function of two variables x and y are calculated as follows:

• With respect to x: we consider y as constant and differentiate the function as a function
of x.

• With respect to y: we consider x as constant and differentiate with respect to y.



64 Chapter 5. Functions of several variables

The partial derivative of f with respect to x is still a function of two variables denoted
∂ f
∂x

.

Similarly, the partial derivative of a function f with respect to y is denoted
∂ f
∂y

.

The partial derivatives of f are the derivatives of its partial applications.

■ Example 5.13 Consider the function defined on R2 by f (x,y) = x2y+ x.

We have
∂ f
∂x

(x,y) = 2xy+1 and
∂ f
∂y

(x,y) = x2.
■

■ Example 5.14 Consider the function defined on R× ]0,+∞[ by f (x,y) = x3 lny.

We have
∂ f
∂x

(x,y) = 3x2 lny and
∂ f
∂y

(x,y) =
x3

y
.

■

■ Example 5.15 Consider the function defined on R2 by

f (x,y) =


xy

x2 + y2 if (x,y) ̸= (0,0)

0, otherwise

Let’s calculate the partial derivatives of f at (0,0).

We have
f (h,0)− f (0,0)

h
= 0 →

h→0
0.

We deduce the existence of the first partial derivative at (0,0) and
∂ f
∂x

(0,0) = 0.

Similarly we obtain
∂ f
∂y

(0,0) = 0.
■

R In the previous example, the function is not continuous at (0,0) because

f (t, t) →
t→0

1
2
̸= f (0,0)

Unlike real single-variable functions, the existence of partial derivatives does not ensure
continuity at the point..

R Let f : R→ R. We know how to define (provided they exist...) f
′
, f
′′
, f (3). Similarly, it is

easy to define higher order derivatives for a function f of two real variables:

•
∂ 2 f
∂x2 =

∂

∂x

(
∂ f
∂x

)
: we differentiate twice with respect to x.

•
∂ 2 f
∂y2 =

∂

∂y

(
∂ f
∂y

)
: we differentiate twice with respect to y.

•
∂ 2 f

∂x∂y
=

∂

∂x

(
∂ f
∂y

)
: we differentiate with respect to y, then with respect to x.

•
∂ 2 f

∂y∂x
=

∂

∂y

(
∂ f
∂x

)
: we differentiate with respect to x, then with respect to y.
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■ Example 5.16 Let g be the function defined on R2 by: g(x,y) = x3y2.

Clearly, we have:
∂ 2g
∂x2 (x,y) = 6xy2,

∂ 2g
∂y2 (x,y) = 2x3,

∂ 2g
∂x∂y

(x,y) = 6x2y. ■

Definition 5.1.6 We say that a function f : D⊂R2→R is of class C 1 if its partial derivatives
exist and are continuous on D. We denote C 1(D,R) the set of such functions.

Theorem 5.1.3 Let f : D⊂ R2→ R be a function of class C 1 and a = (a1,a2) ∈ D.
For any h = (h1,h2) such that a+h ∈ D, we can write:

f (a+h) = f (a)+h1
∂ f
∂x

(a)+h2
∂ f
∂y

(a)+o(∥h∥)

This relation is called the first-order Taylor expansion of the function f at the point a.

Proposition 5.1.4 If f is a function of class C 1 then f is continuous.

Definition 5.1.7 We say that a function f : D ⊂ R2→ R is of class C 2 if its second-order
partial derivatives exist and are continuous on D. We denote C 2(D,R) the set of such
functions.

R

In general
∂ 2 f

∂x∂y
̸= ∂ 2 f

∂y∂x
.

However, we have the following result:

Theorem 5.1.5 — Schwarz’s Theorem. If f is a function from R2 to R, of class C 2 on an

open set D⊂ R2, at every point of D, we have:
∂ 2 f

∂x∂y
=

∂ 2 f
∂y∂x

■ Example 5.17 Let’s consider f the function defined on R2 by:

f (x,y) =


xy(x2− y2)

x2 + y2 if (x,y) ̸= (0,0)

0, otherwise

We can verify that
∂ 2 f

∂x∂y
(0,0) ̸= ∂ 2 f

∂y∂x
(0,0), hence f /∈ C 2(R2,R). ■

DIFFERENTIABILITY

5.2 Differentiability
Definition 5.2.1 We say that f : D⊂ R2→ R is differentiable at a = (a1,a2) ∈ D if for any
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h = (h1,h2), vector in R2, we have as ∥h∥→ 0

f (a+h) = f (a)+h1
∂ f
∂x

(a)+h2
∂ f
∂y

(a)+o(∥h∥)

i.e. f admits a first-order Taylor expansion at a.
In this case, the linear map

da f : R2 −→ R

(h1,h2) −→ h1
∂ f
∂x

(a)+h2
∂ f
∂y

(a)

is called the differential of f at a.

R
• If f is differentiable at a then it is continuous at a.
• The existence of partial derivatives of f does not justify its differentiability at a.
• If f is of class C 1 on D then it is differentiable at every point in D.

■ Example 5.18 Let’s consider the function f : R2→ R defined by f (x,y) = xy.
Since f is a polynomial function, it is of class C ∞ and hence it is differentiable at every point in
R2.
Let’s calculate, for example, d(2,3) f , the differential of f at (2,3). For any (h1,h2) ∈ R2

d(2,3) f (h1,h2) = h1
∂ f
∂x

(2,3)+h2
∂ f
∂y

(2,3) = 3h1 +2h2.

Let’s call dx and dy the linear forms "projection on the axes" defined as follows: 4.5cm

dx : R2 −→ R
(h1,h2) −→ h1

4.5cm

dy : R2 −→ R
(h1,h2) −→ h2

then the linear map d(2,3) f is written as

d(2,3) f = 3dx+2dy

■

R Concepts like limit, continuity, partial derivatives, differentiability, Taylor expansion... of a
function of two variables can be generalized to functions of several variables.
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R In summary, we have:

f ∈C1(D) =⇒ f is differentiable on D =⇒ f ∈C0(D)

⇓

f has partial derivatives

DOUBLE AND TRIPLE INTEGRALS

5.3 Double and Triple Integrals

5.3.1 Double Integrals

Theorem 5.3.1 — Fubini’s Theorem. Let f : R2 −→ R be continuous on the rectangle
R = [a,b]× [c,d] (a < b and c < d). Then:

∫ b

a

∫ d

c
f (x,y) ·dx ·dy =

∫ d

c

∫ b

a
f (x,y) ·dx ·dy.

■ Example 5.19 Calculate J =
∫ 1

0

∫ 5

3
xy ·dx ·dy∫ 5

3
xy ·dx = y

[
1
2

x2
]5

3
= 8y and

∫ 1

0
8y ·dy = 4. Therefore, J = 4.

■

■ Example 5.20 Let U be a bounded region of R2, and f be a function from R2 to R, defined
and continuous on U .
U is a region included in a rectangle of the form R = [a,b]× [c,d].

We want to integrate f over U .
Let’s define:

f̃ (x,y) =

{
f (x,y) if (x,y) ∈U

0 if (x,y) ∈R\U.

Then: ∫∫
U

f (x,y) ·dx ·dy =
∫∫

R
f̃ (x,y) ·dx ·dy.

Often, we will deal with domains of different shapes: a≤ x≤ b,

ϕ1(x)≤ y≤ ϕ2(x).

Then, we will write:∫∫
U

f (x,y) ·dx ·dy =
∫ b

a

∫
ϕ2(x)

ϕ1(x)
f (x,y) ·dy ·dx.
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If the domain is of the form:  a≤ y≤ b,

ϕ1(y)≤ x≤ ϕ2(y).

Then, we will write: ∫∫
U

f (x,y) ·dx ·dy =
∫ b

a

∫
ϕ2(y)

ϕ1(y)
f (x,y) ·dx ·dy.

■

R
The following figure illustrates the general calculation principle, when the domain is
bounded.

■ Example 5.21 Compute I =
∫ 4

3

∫ 2

1

dx ·dy
(x+ y)2

Prior to computation, notice that this integral is not improper since (x,y) 7−→ 1
(x+ y)2 is contin-

uous over the rectangle [3,4]× [1,2]. Thus, we can write:

A =
∫ 4

3

[
−1

x+ y

]y=2

y=1
dx =

∫ 4

3

(
1

x+1
− 1

x+2

)
dx

=

[
ln
(

x+1
x+2

)]4

3
= ln

25
24

■

R Suppose we want to integrate over the rectangle R = [a,b]× [c,d], where a < b and c < d,
the continuous function f , of two variables x and y, defined by a relation of the form:
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f (x,y) := g(x)h(y), where g and h are two continuous functions of one variable. Then, we
can write:∫ b

a

∫ d

c
f (x,y) ·dx ·dy =

∫ b

a

∫ d

c
g(x)h(y) ·dx ·dy =

(∫ b

a
g(x) ·dx

)(∫ d

c
h(y) ·dy

)
.

Proposition 5.3.2 For f a continuous function over a domain U ⊂ R2 and real-valued.

Let D1 and D2 be two disjoint domains (D1∩D2 = /0) included in U . Then:∫∫
D1∪D2

f =
∫∫

D1

f +
∫∫

D2

f .

Similarly, we can write formally:∫∫
D
( f +g) =

∫∫
D

f +
∫∫

D
g.

R Double integrals also allow us to calculate areas. The principle is the same as in dimension
1. If D is a bounded domain of R2, and if we denote A (D), its area, then we have:

A (D) =
∫∫

D
dx ·dy.

■ Example 5.22

We call D the set of points (x,y) such
that:  0≤ x≤ 1

x2 ≤ y≤
√

x

We want to calculate the area of the
domain D , which corresponds to the
lune depicted above.

We denote A this area. We have:

A =
∫∫

D
dx ·dy =

∫ 1

0

∫ √x

x2
dy ·dx =

∫ 1

0

(√
x− x2)dx

=

[
2
3

x
3
2 − 1

3
x3
]1

0
=

1
3

■
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Theorem 5.3.3 Let f be a function continuous on a bounded domain U of R2.
Sometimes, we can use a change of variables to compute∫∫

U
f (x,y) ·dx ·dy.

Let ϕ be a C 1-diffeomorphism on U , that is:
• ϕ : (x,y) 7−→ (u,v) bijective of class C 1 on U .
• ϕ

−1, the inverse bijection, is also of class C 1 on U ′ = ϕ(U).
Then we have: ∫∫

U
f (x,y) ·dx ·dy =

∫∫
U ′

g(u,v)|detJ| ·du ·dv,

where J denotes the Jacobian matrix of ϕ
−1, that is:

det J =

∣∣∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣∣∣∣
.

■ Example 5.23 Polar Coordinates: If x= ρ cosθ and y= ρ sinθ , detJ =

∣∣∣∣∣∣ cosθ −ρ sinθ

sinθ ρ cosθ

∣∣∣∣∣∣=
ρ .
Using the same notations as in the theorem above, we have:∫∫

U
f (x,y) ·dx ·dy =

∫∫
U ′

g(ρ,θ)ρdρdθ .

■

■ Example 5.24 Calculating I =
∫∫

U

xy√
x2 + y2

· dx · dy, where U =
{
(x,y) ∈ R2 : x≥ 0,y≥

0,a2 ≤ x2 + y2 ≤ b2}
A switch to polar coordinates immediately yields: I =

∫∫
U ′

ρ
2 cosθ sinθdρdθ , where U ′ =

[a,b]×
[
0,

π

2

]
. (Draw a picture) Then:

I =
∫ b

a
ρ

2dρ

∫ π

2

0
cosθ sinθdθ =

b3−a3

6
.

■

5.3.2 Triple Integrals

The definition we provided extends without additional difficulty to triple integrals. We will
illustrate the different methods by computing in two ways the volume of a sphere. It is actually
the volume of the ball bounded by the sphere. Let B be the closed ball in R3 with center O and
radius R.

B =
{
(x,y,z) ∈ R3 : x2 + y2 + z2 ≤ R2} .
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The volume of B is: V =
∫∫∫

B
dx ·dy ·dz.

• Stacked Integration (Method 1):
We reduce it to a double integral:

V =
∫∫

D

(∫ √R2−x2−y2

−
√

R2−x2−y2
dz

)
·dx ·dy = 2

∫∫
D

√
R2− x2− y2 ·dx ·dy,

where D denotes the disk in R2 centered at O with radius R. Then we switch to polar
coordinates:

V = 2
∫∫

D ′
ρ

√
R2−ρ2dρdθ =−4π

3

[(
R2−ρ

2) 3
2

]R

0
=

4πR3

3

Calculating the triple integral by a change of variables, here are the spherical coordinates:


x = ρ cosϕ cosθ

y = ρ cosϕ sinθ .

z = ρ sinϕ

We choose ρ,ϕ and θ such that : ρ ∈ [0,r];θ ∈ [0,2π];ϕ ∈
[
−π

2
,
π

2

]
. This choice is easily

justified from the figure. The Jacobian matrix of this transformation is:

J =


∂x
∂ρ

∂x
∂θ

∂x
∂ϕ

∂y
∂ρ

∂y
∂θ

∂y
∂ϕ

∂ z
∂ρ

∂ z
∂θ

∂ z
∂ϕ

=


cosϕ cosθ −ρ sinθ cosϕ −ρ sinϕ cosθ

cosϕ sinθ ρ cosθ cosϕ −ρ sinϕ sinθ

sinϕ 0 ρ cosϕ

 .

The determinant of J is: det J = ρ
2 cosϕ (Sarrus’ rule). Hence:

V =
∫∫∫

B′
ρ

2 cosϕdρdϕdθ =
∫ R

0
ρ

2dρ

∫ π

2

− π

2

cosϕdϕ

∫ 2π

0
dθ .

This immediately leads to V =
4πR3

3
.

More generally, let’s state the theorem of change of coordinates in dimension 3, of which the
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best application example is the calculation of the volume of the sphere of center O and radius R
performed above:

Theorem 5.3.4 — Change of Variables. Let ψ : U ⊂R3 −→V ⊂R3, a C 1-diffeomorphism
such that :

ψ(u,v,w) = (P(u,v,w),Q(u,v,w),R(u,v,w)).

If D ⊂U , we denote D ′=ψ(D). We can still write D =ψ
−1 (D ′), and if f is a continuous

function from U to R, then:∫∫∫
D ′

f (x,y,z) ·dx ·dy ·dz =
∫∫∫

D
f (ψ(u,v,w))

∣∣Jψ(u,v,w)
∣∣ ·du ·dv ·dw,

where Jψ denotes the determinant:

Jψ := det



∂P
∂u

∂P
∂v

∂P
∂w

∂P
∂u

∂Q
∂v

∂Q
∂w

∂P
∂u

∂R
∂v

∂R
∂w



■ Example 5.25 In Mechanics, for example, one may need to find the center of gravity of a
homogeneous half-sphere:

B :=
{
(x,y,z) ∈ R3 : z≥ 0, x2 + y2 + z2 ≤ R2} .

Let m be the mass of the half-sphere. Let µ be the mass density of the sphere. If O is the center
of the coordinate system, the center of gravity G of the solid is defined by the relation:

m
−→
OG =

∫∫∫
B

µ
−−→
OM ·dx ·dy ·dz,

where M denotes a point in B with coordinates (x,y,z).

Using symmetry properties of B, it can be easily shown that xG = yG = 0. We just need to
calculate zG. We have:

mzg = µ

∫∫∫
B

z ·dx ·dy ·dz.

We have:
mzg = µ

∫∫∫
B

z ·dx ·dy ·dz.

A change to spherical coordinates provides:

mzg = µ

∫∫∫
(ρ,θ ,ϕ)∈Ω

(ρ sinϕ)
(
ρ

2 cosϕdρdθdϕ
)
.
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with Ω = [0,R]× [0,2π]×
[
0,

π

2

]
. The calculation is immediate since the integrand is separable:

zG =
µ

m

(∫ R

0
ρ

3 ·dρ

)(∫ 2π

0
dθ

)(∫ π

2

0
sinϕ cosϕ ·dϕ

)
.

Finally, considering that m =
2
3

µπR3 (calculation of a mass density), we find: zG =
3
8

R. ■



6. Solved problems

6.1 Problems

Problem 6.1 Consider the matrix

M =


0 1 −1

0 1 1

1 0 1

 .

1. Calculate M3−2M2 +2M.
2. Deduce from the above that the matrix M is invertible; then provide M−1.
3. Retrieve M−1 using the adjugate matrix (Comatrix).

Problem 6.2 Consider the matrix: A =


m 1 m+1

0 1 2

m 0 −1

 , m ∈ R.

1. For which values of m is the matrix A invertible?
2. In the case where m = 2, calculate the inverse of A.
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Problem 6.3 Solve and discuss, depending on the parameter m, the system of equations:

(S1) :


−mx+ y−mz = 0

x+my− z = −m

2x+ y− z = 1

,

Problem 6.4 1. Trouver a,b et c de R tel que :
1

(1+ x)(1+ x2)
=

a
1+ x

+
bx+ c
(1+ x2)

2. Calculer l’intégrale suivante : I =
∫ dx

(1+ x)(1+ x2)
.

3. En déduire l’intégrale suivante : J =
∫ arctanx

(1+ x)2 dx.

4. Résoudre l’équation différentielle suivante en précisant son type :

(x+1)y′+ y =
arctanx
(1+ x)2 ........(E)

En déduire la solution particulière de (E).
5. Résoudre l’équation différentielle suivante en précisant son type :

y′′+ y′− y = 0.

6.2 Solutions

Solution of problem 5.1

1.

M2 = MM =


0 1 −1

0 1 1

1 0 1




0 1 −1

0 1 1

1 0 1

=


−1 1 0

1 1 2

1 1 0



M3 = M2M =


−1 1 0

1 1 2

1 1 0




0 1 −1

0 1 1

1 0 1

=


0 0 2

2 2 2

0 2 0


So

M3−2M2 +2M =


0 0 2

2 2 2

0 2 0

−2


−1 1 0

1 1 2

1 1 0

+2


0 1 −1

0 1 1

1 0 1



=


2 0 0

0 2 0

0 0 2


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2. We have already established that M3−2M2 +2M = 2I, so
1
2

M
(
M2−2M+2I

)
= I, and

since MM−1 = M−1M = I, we deduce

M−1 =
1
2
(
M2−2M+2I

)
=

1
2


1 −1 2

1 1 0

−1 1 0


3. M−1 by using the comatrix :

We have |M|= 2.

M−1 =
1
|M|

com(M) =
1
2


1 1 −1

−1 1 1

2 0 0


t

=
1
2


1 −1 2

1 1 0

−1 1 0


Solution of problem 5.2

1. We have : |A|=−m2 and then A is invertible iff m ̸= 0.
2. After computation :

A−1 =


1/4 −1/4 1/4

−1 2 1

1/2 −1/2 −1/2

 .

Solution of problem 5.3

(S1)⇔ AX = B with A =


−m 1 −m

1 m −1

2 1 −1

 ;B =


0

−m

1



det(A) =

∣∣∣∣∣∣∣∣
−m 1 −m

1 m −1

2 1 −1

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣
−m 1 0

1 m −2

2 1 −3

∣∣∣∣∣∣∣∣=−m

∣∣∣∣∣∣ m −2

1 −3

∣∣∣∣∣∣−
∣∣∣∣∣∣ 1 −2

2 −3

∣∣∣∣∣∣=−m(−3m+2)−1.

So (S1) admits a unique solution⇔ m ∈ R\
{
−1

3
,1
}

.

If m ∈
{
−1

3
,1
}

, the system is incompatible since

• for m = 1 :
from (L2)− (L1), on a 2x = 1

from (L3)− (L2), we have x = 2

}
=⇒ 2 = 1/2.
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• for m =−1
3

:

From (L2)+(L3), we have 10x−8z = 4

From (L1)+3(L2), we have 10x−8z = 3

}
=⇒ 4 = 3.

For m ∈ R\
{
−1

3
,1
}

, we solve using Cramer’s method:

x =

∣∣∣∣∣∣∣∣
0 1 −m

−m m −1

1 1 −1

∣∣∣∣∣∣∣∣
3
(
m+ 1

3

)
(m−1)

=

∣∣∣∣∣∣∣∣
0 1 −m

0 2m −1−m

1 1 −1

∣∣∣∣∣∣∣∣
3
(
m+ 1

3

)
(m−1)

=
−m−1+2m2

3
(
m+ 1

3

)
(m−1)

,

y =

∣∣∣∣∣∣∣∣
−m 0 −m

1 −m −1

2 1 −1

∣∣∣∣∣∣∣∣
detA

=

∣∣∣∣∣∣∣∣
0 0 −m

2 −m −1

3 1 −1

∣∣∣∣∣∣∣∣
detA

=
−2m−3m2

3
(
m+ 1

3

)
(m−1)

,

z =

∣∣∣∣∣∣∣∣
−m 1 0

1 m −m

2 1 1

∣∣∣∣∣∣∣∣
detA

=

∣∣∣∣∣∣∣∣
0 1 0

1+m2 m −m

2+m 1 1

∣∣∣∣∣∣∣∣
detA

=
−
(
m2 +1

)
−2m−m2

detA
=
−2m2−2m−1
(3m+1)(m−1)

.

S =

{(
2m2−m−1

(3m+1)(m−1)
;
−3m2−2m

(3m+1)(m−1)
;
−2m2−2m−1
(3m+1)(m−1)

}}
.

Solution of problem 5.4

1. a = c = 1/2, b =−1/2
2. Calculating :

I =
∫ dx

(1+ x)(1+ x2)

We decompose to simple elements :

I =
∫ dx

(1+ x)(1+ x2)
=
∫ ( A

1+ x
+

Bx+C
1+ x2

)
dx =

∫ ( 1
2

1+ x
+
−1

2x+ 1
2

1+ x2

)
dx

=
1
2

ln |1+ x|− 1
4

ln
(
1+ x2)+ 1

2
arctanx+C,C ∈ R

3. Deducing :

J =
∫ arctanx

(1+ x)2 dx
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We integrate by parts to get

J =
∫ arctanx

(1+ x)2 dx =−arctanx
1+ x

+
∫ dx

(1+ x)(1+ x2)
=−arctanx

1+ x
+ I

4. (E) is a linear differential equation of order 1.
The general solution of (E) : yG = y0 + yP,
y0 is the solution of (x+1)y′+ y = 0.
- If y = 0 : is a solution of (E0).

- Si y ̸= 0,
∫ dy

y
=−

∫ dx
1+ x

=⇒ y =
K

1+ x
,K ∈ R∗, then y0 =

K
1+ x

,K ∈ R.

We use the method of vaiation of constant, let :

yG =
K(x)
1+ x

=⇒ y′G =
K′(x)(1+ x)−K(x)

(1+ x)2 .

Replace in (E) to get :

K′(x) =
arctanx
(1+ x)2 =⇒ K(x) =

∫ arctanx
(1+ x)2 dx = J.

Therefore :

K(x) =−arctanx
1+ x

+
1
2

ln |1+ x|− 1
4

ln
(
1+ x2)+ 1

2
arctanx+C,C ∈ R,

So :

yG =− arctanx
(1+ x)2 +

1
2

ln |1+ x|
1+ x

− 1
4

ln
(
1+ x2)
1+ x

+
1
2

arctanx
1+ x

+
C

1+ x
,C ∈ R.

A particular solution of (E) :

yp =−
arctanx
(1+ x)2 +

1
2

ln |1+ x|
1+ x

− 1
4

ln
(
1+ x2)
1+ x

+
1
2

arctanx
1+ x

.
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