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Le cours intitulé « Identification des processus » est enseigné en master 1 de la spécialité Génie
Industrielle au sein du département de maintenance en instrumentation au niveau de I’'IMSI a
I’université d’Oran 2 Mohamed Ben Ahmed. Il est articulé sur le canevas du module.

Ce cours est destiné aux étudiants de niveau master 1 et ingénieurs en spécialités automatique,
¢lectrotechnique et génie industrielle.

Le polycopié est devis€ en cinq chapitres :

- Le premier chapitre contient des généralités sur 1’identification des processus que 1I’étudiant doit
connaitre, tant en aspect théorique que pratique, avec son lien avec la commande des systemes
dynamiques, notamment les procédés industriels.

- Le deuxiéme chapitre traite une partie de I’identification consacrée a ’identification des procédés
industriels qui se base que peu des modeles mathématiques des systeémes dynamiques au profit des
connaissances et informations pratique, il s’agit de 1’identification non paramétrique.

- Le troisieme chapitre est consacré a 1’identification paramétrique qui contrairement a la technique
du chapitre précédent se base essentiellement des modeéles mathématiques des systémes dynamiques,
combinés aux mesures obtenus par des expériences sur les systémes physiques a identifiés. Cette
technique représente actuellement la partie essentielle de 1’identification des systemes dynamiques,
des algorithmes variés et aussi efficaces seront présentés dans ce chapitre.

- Le quatriéme chapitre est dédié¢ a la version récursive des algorithmes étudié¢s dans chapitre
précédent, notamment 1’algorithme des moindres carrés récursifs.

Mis a part le premier chapitre, chaque chapitre contient des exercices corrigés concernant son
contenu, ce qui correspond aux travaux dirigés dispensé dans ce module.

Ces exercices sont élaborés de facon a aider les étudiants a assimiler les différents concepts étudiés
dans ce cours.

Objectifs de I’enseignement
Ce cours vise les objectifs suivants :
» Initiation aux concepts d’identification des processus et leur lien avec

commande des systémes dynamiques.

» L’étudiant doit comprendre le réle des techniques d’identification en ses
différentes méthodes continu et discret, dans 1’application industrielle.

» L’étudiant doit maitriser ces techniques par leurs aspects théoriques et
expérimentaux.

Prérequis :
» Automatique linéaire continue et échantillonnée.
» Théorie des signaux et systéme, continu et discret, algébre linéaire.
» Notions d’optimisation.

Niveau : 1°™ année Master.
Spécialité : Génie Industriel (GI).
Enseignement : en Frangais.

Mots clefs : Identification, systémes dynamiques, paramétrique, non paramétrique, protocole
expérimental, signal riche en fréquence, moindres carrés, erreur de sortie.
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Chapitre 1 Généralités

1.1 Introduction

En automatique pour analyser et commander un systéme nous avons
besoin d’'un modele mathématique de comportement, qui décrit avec une
certaine précision et profondeur la dynamique de ce systtme en régime
transitoire, ce modele mathématique peut étre obtenu de deux manieres.

» Par modélisation, et cela en établissant le modéle de comportement a
partir d’un modele de connaissance (électrique, mécanique,
biologique,...etc.).

» Par identification, et cela par une procédure expérimentale selon un
protocole bien établi, le modéle de comportement est obtenu suite a
’utilisation un algorithme d’estimation paramétrique ou non parmi
tant d’autres. Si le modele connaissance s’avere trop peu précis ou
impossible a obtenir, on peut alors se sur un modele de
comportement entrée-sortie. On parle alors d’identification du
systeme.

1.2 Exposé du probléme

L’Automatique consiste en 1’é¢tude  des systetmes réels des différentes
disciplines scientifiques (Electronique, mécanique, thermique, chimie, écologie, biologie,
¢conomie, sociologie, physique, cosmologie...), en vue de 1’analyse, de la prédiction, de la
surveillance, de la commande, et / ou de I’optimisation des systemes. La condition nécessaire
pour cela est D’obtention d’un modele mathématique du systeme réel (on réalise une
mod¢lisation). Un systeme est un objet dans lequel des variables de différents types
interagissent et produisent des signaux observables. Lorsque le modéle du systéme n’est pas
connu, il est nécessaire de procéder a son identification.

En effet, la modélisation réalisée a partir d’un comportement du systeme et / ou de lois
physiques, consiste a déterminer la structure des équations qui régissent le comportement de
ce systéme, et aussi, a fixer, a priori la valeur de ses parameétres (longueurs, masses, inerties,
capacités, résistances, frottements...). Mais, il est souvent impossible d’obtenir une
connaissance a priori complete et précise de tous les parametres du modele. Pour affiner et
compléter cette connaissance, il est alors nécessaire de procéder a une identification du
systéme : a partir des réactions de celui-ci a des sollicitations données et connues. On peut, si
le systéme est observable, identifier les parametres encore inconnus.

L’identification, bien que représentant un des grands chapitres de 1’automatique,
ne peut plus étre considérée comme seulement une partie intégrante de cette discipline, a
I’'usage essentiel des stratégies de commande ou de diagnostic. Son emploi en sciences de
I’ingénieur, parfois avec une terminologie différente, montre qu’elle constitue une discipline a
part entiere des sciences expérimentales, intimement associée a la modélisation.
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L'identification, ou la recherche de modé¢les a partir de données expérimentales, est
une préoccupation majeure dans la plupart des disciplines scientifiques. Elle désigne a la
fois une démarche scientifique et un ensemble de techniques visant a déterminer des modeles
mathématiques capables de reproduire aussi fidelement que possible le comportement d’un
systeme physique, chimique, biologique, économique...

Dans la vie courante, la plupart des systemes peuvent étre appréhendés en utilisant des
modeles mentaux, sans avoir besoin de procéder a une formalisation mathématique.
Par exemple, la conduite d’une automobile, nécessite de savoir, que tourner le volant
vers la droite, permet de faire tourner le véhicule vers la droite.

L’ensemble des informations, de force, d’amplitude de mouvement ... étant en
quelque sorte stockées dans le cerveau via le muscle. L’apprentissage de la conduite
consiste en une identification par le conducteur de I’ensemble du systéme (véhicule,
route, environnement, conducteur...). Au départ, les trajectoires sont peu sires, et au fur et a
mesure que la base d’expérience du conducteur grandit, les erreurs d’approximation du
systéme faites par le conducteur se réduisent, jusqu’a obtention de la connaissance du systéme
a un ordre de plus en plus élevé de la part du conducteur. Pour cela, le conducteur, a 1’aide de
ses organes sensoriels (ceil, bras, oreille...), réalise en permanence des mesures de 1’¢état
du systeme en fonction des sollicitations qu’il impose a son véhicule.

L’identification des systetmes commandés a [’aide de calculateurs nécessite, en
revanche de décrire leurs propriétés au moins a ’aide de valeurs mesurées (tables de valeurs)
ou de représentations graphiques, afin de déterminer leur réponse a un échelon, ou en
fréquence (identification non paramétrique). Pour des systemes complexes, il est nécessaire
d’utiliser des modeles mathématiques (identification paramétrique). L utilisation de modeles
mathématiques est inhérente a tous les domaines des techniques de 1’ingénieur et de la
physique. Elle En effet, la modélisation réalisée a partir d’un comportement du systéme et / ou
de lois physiques, consiste a déterminer la structure des équations qui régissent le
comportement de ce systéme, et aussi, a fixer, a priori la valeur de ses parameétres (longueurs,
masses, inerties, capacités, résistances, frottements...). Mais, il est souvent impossible
d’obtenir une connaissance a priori complete et précise de tous les parametres du modele.

L’identification, bien que représentant un des grands chapitres de 1’automatique,
ne peut plus étre considérée comme seulement une partie intégrante de cette discipline, a
I’'usage essentiel des stratégies de commande ou de diagnostic. Son emploi en sciences de
I’ingénieur, parfois avec une terminologie différente, montre qu’elle constitue une discipline a
part enti¢re des sciences expérimentales, intimement associée a la modélisation.

Elle aide a la conception des systémes et est un instrument de simulation et de
prédiction qui est trés largement utilisé dans tous les domaines, y compris dans des activités
non techniques comme 1’écologie, I’économie, la sociologie ou la biologie.

Un mod¢le doit étre construit a partir de données observées (le modele mental de la
conduite d’un véhicule est développé a 1’aide de I’expérience de la conduite). Un systeme réel
est un objet constitué¢ d’éléments de complexité variable, a ’image méme d’un modele

10
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mathématique. Selon LJUNG, il existe un impénétrable mais transparent écran entre la
description mathématique de notre monde et le monde réel. On peut regarder a travers cette
fenétre et comparer certains aspects du systeme physique avec sa description mathématique,
mais il est impossible d’établir une relation exacte entre les deux. La question de la
susceptibilité¢ de la nature a sa description mathématique présente de vrais et profonds aspects
philosophiques. Nous devons avoir cependant une vue pragmatique des modeles. Il est
préférable de choisir un modele en considérant davantage son utilité que sa « vérité ».

En automatique, on distingue deux approches pour I’identification des systémes :
» Approche en boucle ouverte

* Approche en boucle fermée

1.3 Algorithme général d’identification
11 faut répondre aux questions suivantes :

— Quel genre de modele ?

— Paramétrique ou non paramétrique ?

— Quelles mesures effectuer ?

— Quel signal d’excitation ?

— Quelle structure adopter ?

— Doit-on y inclure des connaissances a priori ?

— Comment choisir le bon mod¢le parmi tous ceux calculés ?
— Ce modele est-il adapté a ce que I’on va lui demander ?

Notez que le processus d’identification est un processus itératif, chaque passage apportant un
peu plus de connaissances (fig 1.1). Dans le chapitre suivant nous allons présenter quelques
méthodes d’identification non paramétrique.

11
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| Connaissances a prior

Mesures

Choix de la
structure

Données

[

Critére de
sélection

) |

Calcul d’'un

N
A

modéle

Validation

J

Modeéle final

Fig. 1.1 — Algorithme général d’identification des systemes.

La réponse a ces questions et les différentes structures et stratégies a adopter sont détaillées

dans les chapitres suivants.
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Chapitre 2 : Identification non paramétrique
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2.1 Introduction

L’objectif est d’obtenir un modele qui "se comporte comme" le systeme. La
plupart du temps, les parametres de ces modeles n’ont qu’un rapport lointain
avec les parameétres d’un modele de connaissances.

En premier lieu, il faut donc répondre aux deux questions suivantes :
— Quelle entrée ?
— Comment traiter la sortie ?

2.2  Quelle entrée ?
2.2.1 Analyse harmonique
Entrée sinusoidale de type u = Asin(wf), w balaye 1’espace des pulsations
susceptibles de contenir une pulsation de coupure du systeme. En notant
I’amplitude et le déphasage de la sortie vis-a-vis de I’entrée on trace un
diagramme de Bode. De I’analyse de ce diagramme on détermine le mode¢le.
Les résultats sont difficiles a exploiter si les constantes de temps sont proches.

Bonne excitation sur tout le spectre de fréquences. Ce n’est pas une commande
industrielle classique et par conséquent elle est difficile a mettre en ceuvre.

2.2.2 Réponse impulsionnelle

Idéalement la meilleure méthode car le spectre est constant. Mais il est
impossible de réaliser un Dirac correct, sauf peut-€tre en €lectronique...

2.2.3 Réponse indicielle

Le spectre est correct, la commande est facile a implanter car c’est une
commande classique. C’est la méthode la plus utilisée.

2.3 Etude des réponses indicielles

2.3.1 Méthode de Broida

La méthode de Broida consiste a "faire coller" un mod¢le de la forme G (s)= lkf;
sur la réponse du systeme.
Les valeurs de T et de 7 sont calculées a partir des relations suivantes :
7=5,5x%(t,~t,)
T=2,8xt —1,8Xt, @.1)

14
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Sfinal - - - - - - ==

40% Sfi-nal - ',ﬁl
-)8(/( Sfinal [~ T

1 1 T

Fig. 2.1 — Méthode de Broida : Réponse indicielle.

On utilisant matlab nous pouvons extraire la valeur finale de la sortie y, puis calculer y; qui
correspond a 0.28%y, et y, qui correspond a 0.4*y;, ayant ces deux valeurs, nous pourrons
déterminer les valeurs des temps t; et t; par I’emplacement de y; et y, dans le vecteurs des
mesures de y.

En pratique, la prise en compte du retard pur est difficile dans une synthese de correcteur. On
utilise donc I’approximation suivante :

T k(1-T
G(S)zke _ ( S)z k
1+7s 1+7s (1+Ts)(1+Ts) 2.2)
Cette approximation reste valable jusqu’a la pulsation w = 1/T
2.3.2 Méthode de Strecj
La méthode est dédi¢e au modéle suivant :
-T
G(s)=—-—
(1+7s) 23)

1. Mesurer Tu/Ta.

2. Dans la colonne 7Tu/Ta du tableau de la figure 2.4 trouver la valeur
immédiatement inférieure a ce ratio.

3. Sur la ligne de ce ratio déterminer #.

4. Toujours a I’aide des valeurs numériques de cette ligne, calculer 7 avec Ta/z.

5. Calculer la nouvelle valeur de Tu avec Tul/z.

6. En déduire T avec T=Tu— Tu .

15
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n | Tu/Ta | Tu/7 | Ta/7
1 0 0 1
2 0.104 | 0.282 | 2.718
3 0.218 | 0.805 | 3.695
4

5

0.319 | 1.425 | 4.465
i 0.410 | 2.100 | 5.119
6 0.493 | 2.811 | 5.699
7 0.570 | 3.549 | 6.226
8 0.642 | 4.307 | 6.711
9 0.709 | 5.081 | 7.164
10| 0.773 | 5.869 | 7.590

Fig 2.2 — Méthode de Strejc : Réponse indicielle.
Note : si Tu = Ta < 0.1, donc n = 1, On applique plutdt la méthode de Broida.
2.3.3 Méthode de Strecj avec intégrateur

Identifier un modéle sous la forme :

6(s) =5 L
s (1+7s) 2.4
1. Avec x/y : déterminer n
2. Calcul de ravec 7= Tu /n (2.5)
3. Calcul de £, =ﬂ><i
Au At (2.6)

n| x/y
11 0.368
210.271
310.224
1
5

0.195
0.175

Fig 2.3 — Méthode de Strejc (systéme avec intégrateur).

16
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En pratique il est assez rare d’identifier un systeéme intégrateur en boucle ouverte car le
systeme dérive rapidement en dehors de son domaine de linéarité (saturation, ...). En pratique,
on procede a une identification en boucle fermée.

Exercice 2.1

Linear Simulation Resuts

09

Amplilude
) ) o o
o > - @
\
1

=)

03

1 15 2 25 3 35 4 45 5
Time (sec)

Fig. 2.4 — Réponse du systeme a un créneau unité de durée ¢ = 0,5s.

1. Identifier le systéme avec la méthode de Strejc, comme si la réponse était la
réponse a un échelon.
2. Déduisez-en la fonction de transfert du systéme.

Solution :

1. Modéle Strejc
On mesure Tu = 0.3s et Ta = 1.3s. En appliquant la méthode :

Tu/Ta=0,2308 = n=2
Ta/T=2,7T18 = 7=Ta/2,718 =0,4783
Tu/T=0.282 = Tu =0.1349
Tr=Tu—-Tv = Tr=0,1651
Gain : 0.83
d’onl le modéle : - 0.83¢—0.134p
Gp) = o =

(l+7p)»  (1+0,5887p)?2

17
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2.4 Méthode de corrélation

Les méthodes de corrélation consistent a utiliser les propriétés statistiques des bruits
de mesure de fagon a obtenir une forme de la réponse impulsionnelle.

2.4.1 Rappels sur les signaux aléatoires

Pour des signaux aléatoires x(7) et y(¢) on peut définir les fonctions d’autocorrélation,
2w, et de corrélation, 2,

Q2.7)

Ou E{} représente 1’espérance mathématique. Ces fonctions sont différentes, mais peuvent en étre

déduites, des fonctions d’auto-covariance et de covariance, qui sont les fonctions de corrélation
correspondant aux signaux centres.

Dans le cas de signaux stationnaires, les quantités statistiques sont invariantes pour toute
translation du temps. Les fonctions de corrélation ne dépendent plus que de ’écart v = ¢, — £,. De plus,
I’hypothese d’ergodicité, qui est vérifiée par la plupart des signaux aléatoires utilisés en pratique,

permet de remplacer I’opérateur E{-} par une moyenne temporelle. Ainsi pour des signaux aléatoires

stationnaires ergodiques, ce que nous supposerons toujours, les fonctions de corrélation sont données

par:
R (T) = limL JT‘ x(l)x(tJrT)dl
xXx T QT L >

. (2.8)
R, (7) :lri_)mngx(t)y(t—irf)dt,

-7
Et deux signaux sont non corrélés si pour tout 7, R,,(7) = 0.

Ces fonctions vérifient quelques propriétés, que nous pouvons rappeler :

vz,R, (0)=|R, (7)|;

b

2

v,R (7)=|R, (-7);

v Six ety sont non corrélés, et z(¢) = x(¢) + y(¢), alors :
R_(7)=R.(7)+R,(7); (2.9)
v Soient u et y les entrées et sorties d’un systéme linéaire stationnaire de réponse
impulsionnelle 4(%), alors :

oo

R, (7)=[h(0)R,, (z-1t)dt, (2.10)

0

Le calcul pratique des fonctions de corrélation (2.8) doit étre modifié de fagon a tenir compte des
impératifs techniques de mise-en-ceuvre. On doit donc remplacer I’opérateur d’avance par un retard et
tenir compte d’une évaluation en temps fini, on obtient alors les estimations :
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J
. (2.11)
{

Dans le cas d’une implantation numérique de ces formules pour des signaux échantillonnés, il vient :

N-1

, 1
Rxx (k) = ;Zxr—er’
=0 (2.12)

N-1

A 1
ny (T) = _le‘—kyl‘ 3

N r=0

2.4.2 Obtention de la réponse impulsionnelle

Supposons qu’a la sortie y(f) du systéeme a identifier, de réponse impulsionnelle 4(f), se
superpose un bruit de mesure b(f).

Lorsque I’entrée sur ce systéme est un signal aléatoire u(z), la fonction de corrélation entre
m(f) et u(f) s’écrit :

=

R, (7)=[h(t)R, (z-t)dt+R, (7). (2.13)

0
Cette relation présente deux avantages par rapport a la méthode précédente de déconvolution :
v Réduction de la longueur des enregistrements : quand u(7) est strictement aléatoire,

R, (T) s’annule rapidement, on a donc moins de données a traiter ;

v" Réduction du niveau de bruit : lorsque u(f) et b(f) sont non corrélés, R , (T) =0, etla

relation (2.13) se réduit a un produit de convolution non bruité.

De plus, lorsqu’on utilise les estimations, sur une méme période de temps, des fonctions de

corrélations R, (7)et R, (7), cette relation reste vraie sans approximations. En effet, pour tout

intervalle [#,2,],ona:

(2.14)

2

=]ih(i){j.u(t)u(t+f—/l)dt:|d/1.

t
1

Comme les signaux sont stationnaires, les estimations des corrélations sont liées, pour 7 dans (2.11)
suffisamment grand, par :
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oo
A

R, (7)=[h(e)R,, (z-1)d. (2.15)

0

De fagon a avoir les signaux u(f) et b(¢) décorrélés, on excite le systéme par un bruit blanc défini par :
RW(T)=5(T), (2.16)

Ce qui correspond a un spectre d’autocorrélation constamment égal a 1. La mesure de Ii’um (1') donne

directement la réponse impulsionnelle par :

R, (7)=h(7) 2.17)

2.4.3 Modalités d’application

Comme il n’est pas possible de construire un bruit blanc, on utilise des signaux binaires
pseudo-aléatoires dont la génération et les propriétés statistiques. Nous ne détaillerons leur application
que dans le cas des systemes discrets, I’obtention de la réponse impulsionnelle des systémes continus
se faisant par la méme méthode. La fonction d’autocorrélation des signaux binaires pseudo-aléatoires
discrets de longueur L unités de temps, a valeurs {0, a}, est :

. L+1 & a’
R (K)=a"=— 6(k-nL)——, 2.18
o (K) 7 ( )L (2.18)

n=—o0

Qui approche la fonction d’autocorrélation d’un bruit blanc (lorsque L devient grand). Il est 1égitime
de supposer qu’un tel signal est non corrélé avec les bruits de mesures. On obtient donc :

Sk
Jj=0

L+l - e (2.19)
+
a’ Z b =3,
n=—oo j=0 L
En se plagant dans le cas ot ;= 0, pour j > N, et L > N on obtient pour k € {0,..., N}:
L+1 N a’
R (K)=a*=—h -Y —h,, 2.20
um( ) L k /=0 L j ( )

Ou le second terme a droite est une constante —a2K0 /' L, K, correspondant au gain statique du

systéme. On peut donc, par translation, calculer pour chaque & la valeur de la séquence de pondération.

Cet inconvénient peut étre évité en utilisant des séquences ternaires pseudo-aléatoires [Foulard
et al. , 1977] qui présentent 1’avantage d’avoir une fonction d’autocorrélation a valeurs nulles entre
pics. Cependant ces séquences sont plus délicates a mettre en ceuvre, car basées sur 3 états, et
demandent une durée d’expérimentation deux fois plus longue que les signaux binaires pseudo-
aléatoires.
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Dans le cas ou en utilise une séquence binaire, Landau [Lan88] préconise quelques régles
pratiques pour en choisir la longueur. Notamment, afin de déterminer le gain statique du systéme, il
convient de choisir une séquence dont I’impulsion de durée maximale soit supérieure au temps de
montee, t,,, du systéme. On doit donc avoir :

VA1, 2.21)

Ou v est le nombre de cellules et A la période de 1’horloge générant le signal binaire pseudo-aléatoire.
D’autre part, pour balayer tout le spectre de fréquence, il faut que la longueur de 1’expérience L soit
supérieure a la période de la séquence pseudo-aléatoire, soit :

(27-1)A<L. (2.22)

Lorsque la condition (2.21) n’est pas vérifiée, il est préférable, pour ne pas trop augmenter A
plutot que v. En pratique, on prendra une période d’horloge multiple de la période d’échantillonnage.

2.4.4 Exemple

Soit la réponse impulsionnelle g(k) discréte d’un systéme ayant comme entrée un signal SBPA
u(k) d’amplitude 1, donnée par le tableau suivant :

u(k) 1 -1 1 1 1 1 1 1

g(k) 0 0.7 0.210 0.063 0.019 0.006 0.002 0.005

Le script sous matlab suivant permet 1’estimation de cette réponse impulsionnelle par la méthode de
corrélation et compare les réponses du systéme réel et celle obtenue par la réponse impulsionnelle
estimée.

clear,close all,clc

uk=[1 -1 1 1 1 -1 -17;

gk=[0 0.7 0.210 0.063 0.019 0.006 0.002 0.005];
vk=conv (uk, gk) ;

vk=yk(1:13);

Ruu=xcorr (uk) ;

Ruy=xcorr (uk, yk) ;

Ruye=conv (Ruu, gk) ;

RkO=Ruu(1:7)"';

Ruyk=Ruy (1:7)"';

Rkl1=[Ruu(2) Ruu(l:6)]';Rk2=[Ruu(3) Ruu(2) Ruu(l:5)1"';
Rk3=[Ruu(4) Ruu(3) Ruu(2) Ruu(l:4)1"';

Rk4=[Ruu(5) Ruu(4) Ruu(3) Ruu(2) Ruu(l:3)]"';

Rk5=[Ruu(6) Ruu(5) Ruu(4) Ruu(3) Ruu(2) Ruu(l:2)]1"':;
Rko=[Ruu(7) Ruu(6) Ruu(5) Ruu(4) Ruu(3) Ruu(2) Ruu(l)]':;
Rk=[Rk0 Rkl Rk2 Rk3 Rk4 Rk5 Rk6];

gke=Rk\Ruyk;
Ruyel=conv (Ruu, gke) ;
yke=conv (uk, gke) ';
k=1:13;
plot (k, yk)
hold on
plot (k,yke, 'r")
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Vu que les calculs des fonctions de corrélation et de convolution sont lourds, alors I’outil matlab est
utilis¢€ pour réaliser cette méthode d’identification sur cet exemple.

La fonction xcorr.m permet le calcul des fonctions d’autocorrélation et de corrélation et la fonction
conv.m permet le calcul de la convolution des signaux.

Le résultat du programme est présenté par la figure suivante :

——réponse mesurée
——réponse estimée

sortie du systeme

temps en sec

Fig. 2.5 — Réponse du systeme réel et par la réponse impulsionnelle estimée.

On constate que 1‘estimation est mauvaise au début mais s’améliore avec le temps.
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Chapitre 3 : Identification paramétrique
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3.1 Choix du signal d’excitation

Pour bien identifier, il faut bien exciter dans tout le spectre de fréquences susceptible
de contenir des constantes de temps du systeme.

— sin(wt) : parfait d’un point de vue spectre (balayage en fréquence) mais peu de
systéemes acceptent ce genre d’entrées.

— d(?) : parfait du point de vue théorique, mais, hormis en électronique, il est
impossible de réaliser un tel signal.

— u(?) : moins bon d’un point de vue spectral (u(f) = sinc(f)), mais facile a implanter
— b(?) : bruit blanc idéal d’un point de vue spectral mais comment le réaliser ?

Il arrive que vous n’ayez aucune possibilité d’exciter le systeme (ex : machine en
production), il faudra alors profiter des commandes "naturelles" du systeme comme signal
d’entrée du systeme. Dans ce cas, le premier travail consiste a calculer le spectre du signal
d’entrée (FFT par exemple). Il faudra vérifier a posteriori que les constantes de temps
identifiées sont bien dans des domaines de fréquences dans lesquels le systeme a été excité.

3.2 Les séquences binaires pseudo aléatoires (SBPA)

L’un des moyens de réaliser un signal "aléatoire" est la mise en ceuvre de Séquences
Binaires Pseudo Aléatoires (en anglais PRBS : Pseudo Random Binary Sequence)

Principe :

Pour que le systeme fonctionne, on doit initialiser le registre a n’importe quelle valeur
binaire sauf zéro. le nombre codé en binaire 4 = b7bsbsbasbsbrb by est "aléatoire. De la méme
facon, le bit 7 semble indépendant de ses valeurs précédentes.

Une séquence sur N bits a une longueur de 2V — 1 =L dont 2" «I» et 2¥' — 1 « 0 »,

sa valeur moyenne est donc non nulle.  E(s(¢)) = %

amplitude

||1Il

’ ] ] ]
] ] I

ll()ll

Fig 3.1 — diagramme temporel d’une séquence binaire pseudo aléatoire.
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y g LT, t
/ 2\ 7 AN

Fig 3.2 — Fonction d’auto-corrélation d’une SBPA.

Pour déterminer la forme du spectre il faut en premier lieu calculer sa fonction d’auto-

corrélation, le spectre étant la transformée de Fourier de la fonction d’auto-corrélation.

Fonction d’auto-corrélation

1 LT
CW(7)=—J-x(z')x(t—z')dt
LT (3.1
Si|7<T
c.(z) az(l-ﬂmJ

LT (3.2)

Si|z7|=2T c. (7) __a
L (3.3)

On en déduit le spectre qui est la transformée de Fourier de la fonction d’auto-corrélation.

L+1& n Sm”% a’
P =a’ ol v—— -——0
(f) ¢ ; (V LT) ;;” L (v)
L (3.4)

Le spectre de la SBPA représenté en figure 3.5 est donc un peigne de Dirac modulé par un
sinus cardinal. On considére que le bruit peut étre considéré comme un bruit blanc dans le
premier tiers du premier lobe (=1=3/Te). On remarque donc que :

— plus L grand = plus la valeur moyenne est faible.

— plus L grand = plus de raies, plus proche du bruit blanc.
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SBPA(f)
|||II .._/_\\.'
IT: 2 1/Te 2/Te
T

Fig. 3.3 — Spectre d’une SBPA.

3.2.1 Choix des paramétres d’une SBPA
Il faut donc déterminer a; L et Te "optimum" vis-a-vis du systeme a identifier.
Le premier compromis concerne L et 7e.
Plus la séquence est longue :
—plus il y a d’informations
— plus le transitoire est négligeable
— plus les organes soufrent
— plus les dérives s’accentuent
Le deuxiéme compromis est : plus a est petit,
— plus le signal est noy¢ dans le bruit (le vrai celui-la !)
— moins les organes soufrent
—moins les dérives s’accentuent

Le choix de a est donc avant tout lié au bruit présent dans le systeme. On choisira a
juste assez grand pour avoir du signal en sortie du systéme.

Choix de L et Te Une SBPA de longueur L = 2N envoy¢e a la fréquence 1/7e présente un
plateau de longueur maximale de longueur N x Te. Le plus petit plateau étant de longueur 7e

Le choix de N (donc L) et Te est donc, encore une fois, un compromis entre :
— une bonne identification du gain statique
— une bonne excitation sur la bande de fréquence du systéme

26



Chapitre 3

Identification paramétrique

Soit Tmax 1a plus grande constante de temps du systeme et 7., la plus petite constante

de temps du systéme.

Pour une bonne identification du gain statique on choisira :

NTe=32a5 tpax

(3.5)

Pour une bonne excitation sur le spectre entre 0 et la plus haute fréquence de coupure

on choisira :

0,34 =
T,

2 ”Tmin

La résolution de ses deux équations donne N et Te

(3.6)

Note 1 : si Tmax >> Tmin N devient vite tres grand donc L7e devient prohibitif !

SBPA(f)

—zone ol la SBPA est un bruit blanc

., L L
fo=0.3/Te
I‘II
i, plateau maximum=nNT,
I'. a N
||l /-——-—‘
' / — |
" ’ /_\ /
T ;1 T "x.__’_///_\ ¢ t
T2 1/Te 2/T. ' t=345 Thor
<de

Fig. 3.4 — Parametres d’une SBPA.

Note 2 : Si fe est bloquée et trop grande (beaucoup de systémes sont sur
¢chantillonnés), il est parfaitement possible choisir 7e = n/fe en répétant chaque bit » fois

Note 3 : Si fe est bloquée et trop petite, abandonnez 1’idée d’identifier la petite
constante de temps : de toutes fagons vous ne pourrez pas la contrdler !

Tab. 3.1 — Tableau des bits a utiliser pour obtenir une séquence de longueur maximale.

n bits

3 by B by

4 bs B by

5 by B by

6 bs B by

7 bﬁ @ 1)5

8 | brPBbsPbhPby
9 bs B by

10 bo B bs

bg

by
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JK
JK JK JK
Flip-Flop Flip-Flop1 Flip-Flog2 Flip-Flops Fiip-Flop3

Logical
Operator!

Fig. 3.5 — Programme simulink pour la génération d’une SBPA avec 5 bascules.

Le script suivant d’une fonction sous matlab, permet de générer le méme signal SBPA.

function x=SBPA (n)

global vt
%$Programme de génération d'un signal SBPA.
X1=0;X2=0;X3=0;X4=0;X5=1;351=X5;n=50;S=[];
for i=2:1length(yf)
J=xo0r (X2,X5);
if (J==0)
X1=0;
else

end
X5=X4;X4=X3;X3=X2;X2=X1;
S(i, :)=X5;

end

S=[S1;S];

e=6*ones (length(yf) -n+2,1);
x=e+0.1*S;

figure (3)

plot (x)
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Exercice 3.1

En prenant une période d’échantillonnage 7e=100 ms, quelles sont les
constantes de temps tminet Tmax que 1’on peut correctement identifier en utilisant une
SBPA générée par 3 bascules en déduire sa longueur ?

Solution : En utilisant 1’équation (3.5) nous pouvons calculer la constante de temps
max, en fixant le choix de 37,,.x par exemple, soit avec N =3 (trois bascules)

NTe =5 Tyax = Tmax = NTe/3 = 3x0.1/3 = 0.1s
L’équation (3.6) nous permet d’obtenir la constante de temps min, soit

034 =z, ==L 0053
1, 2rnr 2703 0.67

e

La longueur de la séquence SBPA est donnée par L = N 1=2-1=7.
3.3 Identification basée sur I’erreur de sortie

Le principe de cette méthode d’identification est illustré en figure 3.5. Le modele est
une fonction de n parametres 6;, i variant de 1 a n. Il s’agit alors de déterminer les parametres
6; tels que le critére soit minimum. Le critére est en général choisi de la forme J = Z¢’.

. ba Yi
Systéme
U ™ Ei Crite
(  +—Critére
\-/
. -

.\Iod//c —

( Ui

Fig. 3.6 — Principe d’identification fond¢ sur I’erreur de sortie.

La recherche des parameétres optimaux  se fait par programmation non linéaire. IL
s’agit d’utiliser un algorithme qui a partir de paramétres non optimaux 6; et un critére J donne
les parametres

Ces algorithmes sont nombreux, a titre de d’exemple voici les plus utilisés.
— gradient
— quasi Newton (Levenberg-Marquart)
— Nelder et Mead
— algorithmes génétiques
— recuit simulé
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Avantages de cette méthode :

— pas d’hypothese sur la forme du modele : non linéaire.

— adapté a la recherche de parameétres physiques si modele de connaissances (modele
continu !) L’inconvénient majeur est qu’aucun de ces algorithmes n’est capable de garantir

que le résultat est réellement 1’optimum.

3.4 Identification basée sur I’erreur de prédiction

Dans cette partie, nous supposerons que le modele obtenu est un prédicteur, c’est a
dire qu’il permet de calculer la sortie a I’instant i en fonction des entrées et des sorties réelles

aux instants précédents u; 4 et y; x

Systéme

Ui

( +—Critére

ail
.\I()ybé

Fig. 3.7 — Principe d’identification foncée sur I’erreur de prédiction.

3.4.1 Méthode des moindres carrés simples

Les calculs suivants seront fondé€s sur le modele présenté en figure 3.7.

Ui B(z~1)
A(z~%)

3
Vi Yi

)

Fig. 3.8 — Mode¢le du systeme étudié.

La mise en équation du systeme donne :

--ll‘i Bu,‘
Yi v; + 5;
Ay — 53) Bu;
Ay; Bu; + AB;
posous :
e; = ABG;

e; sont les 7ésidus de 'estimation. On obtient finalement :

Ay; = Bu; + ¢;
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Si nous possédons N mesures consécutives, on peut écrire N — n fois 1’équation 3.7. Ou
n est I’ordre, supposé connu du polynéme 4, on appellera p I’ordre du polynéme B.

Sous forme matricielle, on obtient :

- - - - a) r o
YN —YN-1 —YN=2 ..+ —YN-n (N siw UN —p as EN
YN -1 —YN-2 —YN-3 —~YN-n-1 UN-1 UN-p-1 : eN-1
N -2 —-yn-3 : UN-2 UN—p=2 ' o
Yn-3 = ’ : - ' ' : ._ NP an n
: : —Yn+1 . UN—p-3 bU
: by
Yn+2 ~Yn+1 ~Yn : UN-p : €En+2
L Yn+1 | L “Yn —Yn-1 ... - Un+1 ] : €n+1
L bm J - -
soit
y=X0+e
le critére J est :
J = Z e =ele
donc
J=wy-X0T(y-X0)=yTy—0"XTy—yTX0+0"X7X0
Nous cherchons la valeur 8 de 0 qui minimise J. Ainsi
av] T T
— =0=-2X"y+2X'X0|,_»
0 |,_; Y lo=5
D’otl on en déduit :
0=(XTX)"'xTy (3.8)

Il reste a vérifier que la valeur obtenue est bien un minimum

%]

=B = eXTX

(3.9)
Matrice définie positive : c’est bien un minimum

Exercice 3.2
Un systéme sans bruit soumis a une rampe unité donne la sortie suivante.
kl10(1|2|3] 4 5
up [011]2(3| 4 5
ye |00 | 7742 —-14

On se propose d’identifier un modele paramétrique de la forme

2
Yk = —a1¥Yk-1 + biug_,
1. Ecrivez la relation précédente pour k=4 et k= 3.

2. Montrez que ces deux équations peuvent se mettre sous une forme matricielle de la
forme :

y=X0+e
3. Déterminez les coefficients a; et b;.
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Solution :

42 =—Ta, +9b,
7=—Ta, +4b,

2. On se propose d'identifier un modele paramétrique de la forme :

[ 42

i

——T 9}—(11

_—T 4 _b]}:y:-\o*\f"e

=0

3. La solution est
. - 3
0=(X"X) X'y=
(xrx) =]
Exercice 3.3

La réponse indicielle d’un systéme linéaire, stationnaire, causal et initialement au repos a
donné pour les 3 premiers points d’échantillonnage 7e = 0.2s les valeurs suivantes :

y1=0.18 ; 1,=0.33 et y3=0.45.
Le systeme peut étre modélisé par la fonction de transfert du premier ordre :

bz

1

G(Z_l) B l+az

1. Expliciter la fonction quadratique relative a la minimisation de I’erreur de sortie.
2. Répéter le développement précédent pour I’erreur d’équation (de prédiction).
3. Déterminer les valeurs numériques de a; et b;.

Solution :

1. La sortie du modele sur la base des entrées passé€es uniquement (erreur de sortie) est :
7, (k)==a3, (k=1)+bu(k-1) k=1,2,3

La prédiction du modele sur la base des entrées et sorties passées (erreur d’équation) est :
9 (k) ==a,y(k=1)+bu(k-1) k=1,2,3

En substituant les valeurs des sorties de la réponse indicielle données dans les deux équations
récurrentes, on obtient pour I’erreur de sortie :

5, (1)==ap, (0)+hu(0) $,(1)=—-a,0+b.1=b
¥,(2)=-ap,(1)+bu(l) = Y,(2)=-a.b+b.1=b(1-q)
Py (3)==ap,(2)+bu(2) |5, (3)=-a.b(1-a)+b.1=b(1-a+a})
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Pour I’erreur d’équation :

(1) =-a,y(0)+bu(0) 7(1)=-a,.0+b.1=b
5(2)=—ay (1) +bu(1) =1 7(2) =—a,.0.18+5,.1=~0.184, + b
y(3)==ay(2)+bu(2) |y(3)=-a,.0.33+h.1=-0.33a, +b,

Le critere quadratique pour minimiser I’erreur de sortie (OE) :

2

minJ (6)= 3. (0)= X[ (D)5, (1.6)]

k=1

Cela donne pour N =3 et 0 =[a, b ]T

mgin{[O.lS—b, [ +[033-5(1-a)] +[0.45—b, (1-q, +a5)]2}

L’erreur e (k) est non linéaire par rapport aux parametres a; et b.

2. Le critere quadratique pour minimiser I’erreur d’équation (ARX) :

N N
minJ ()= ¢ (k)= [ y(k)-5,(k.0)]
Cela donne pour N =3 et 6 =|a, bl]T
min{[0.185 ' +[0.33+0.182, -5 ] +[0.45+0.33a, - ]}

L’erreur e (k) est linéaire par rapport aux parametres a; et b;.
3. Identification du systeme (calcul des parametres a; et by) :

L’identification se fait par la minimisation des carrées de I’erreur ce qui nécessite
I’annulation du gradient du critere quadratique par rapport aux parametres a; et b;.

3.1. Minimisation de I’erreur de sortie :
A partir du critére quadratique de I’erreur de sortie (OE) nous avons :
a—‘]:2(0.33—19l (1-a))h +2(045-5 (1-a,+a) )b, (1-24,)
oq,

=1.56b, —4b" —1.8ab, +8a,b} —6a;b} +4a’b} =0

s—g:2(0.18—b1)(—1)+2(0.33—b1 (1-a))(-1+a)+2(045-b(1-a +a} ))(~1+q, -a)

1

=-1.92+1.56a, + 6b, —8ah, —0.9a; +8a’b, —4a’h +2a'b, =0

On obtient un systéme de deux équations algébriques non linéaire a deux
inconnues est de degré 5 qui n’est pas ais¢ de résoudre. Il existe plusieurs
méthodes numériques pour résoudre un tel systeme, la plus efficace est la méthode
de Newton-Raphson.
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Il possede donc plusieurs solutions. La résolution numérique nécessite une
condition initiale relativement proche de la solution, une identification antérieure peut fournir
les valeurs initiaux de ’algorithme numérique de résolution, tel 8o =[-0.6 0.1]":

La solution est donnée par la fonction fso/ve.m sous matlab par :
a,=-0.8191 et b, =0.1809

On obtient ainsi la fonction de transfert :

G(Z_I ) _ 0.18092_1
1-0.8191z”"

3.2.Minimisation de I’erreur d’équation :

A partir du critére quadratique de I’erreur d’équation nous avons :
8_J= 2(0.33+0.18a,—5,)0.18+2(0.45+0.33¢, —5,)0.33
al

=0.4158+1.02H,+0.2826a, =0

g_g =2(0.18=b,)(~1)+2(0.33+0.184, — b, ) (—1) + 2(0.45+0.33a, - b, ) (~1)

1

=-1.92-1.02a, + 6b, =0

On obtient un systéme de deux équations algébriques linéaire a deux inconnues
qui posse¢de une solution unique et donc aisément calculable.
On forme le systéme d’équation sous forme matricielle puis on le résout:

0.2826 -1.02 || a, B -0.4158 . a B 02826 1.027'[-0.4158
-1.02 6 ||| | 1.92 b| | -1.02 6 1.92
G,=-0819 et b =0.181

On obtient ainsi la fonction de transfert :

N 0481z
G(=")= 1—0.81292‘1

3.4.2 Calcul du biais de I’estimateur

E[f) = E[(XTX)"'XxTy| et y=X0+e
E0+(XTX)1XT¢]
0+ E[(XTX)1XT¢

L’estimateur est non biaisé si
E[0] =0
done si

E(XTX)'XTe|=0 (3.10)
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I1 faut donc que : X et e soient non corrélés
e soit centré.

Mais ce n’est pas le cas. Le calcul de ce biais sur I’exemple présenté en figure 3.8 permet de

le montrer.
Bi
U; bz1 U; Yi

I+az-1 \_/

Fig. 3.9 — Systeme du premier ordre bruité.
Les équations du systeme sont :
Vi +avi-1 = buj—
yi = vi+06i (3.11)

Ou S est un bruit répondant au deux équations suivantes :
E[3)=0
E3,3,_]\] =0’2(5(k) (312)
En réécrivant les équations du systéme on obtient :
Yi +ayi-1 = bui-1 + Gi +abi-
= buj-1 +e€;

E:(:,‘] = E:3,‘ +03,‘_1} — E:3,'] +aEL3,-_1] =0

Eleiei-t] = E[(8i+ aBi-1)(Bi-x + aBi—x-1)]
E:3i'3i'k] + GEZ3,‘.3{_}€_1] + aE:3i—l-3i—k] + 025:31'_1.3,‘_;‘._1]
o2[(1 + a2)8(k) + ad(k — 1) + ad(k + 1)]

(3.13)

%(1 + a?)

ao ao

-1 0 1 k

Fig. 3.10 — Fonction d’auto-corrélation des résidus d’estimation.
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La fonction d’auto-corrélation (voir fig. 3.9) montre bien que les résidus e; ne sont pas un
bruit blanc, notre estimateur est bien biaisé ! Il reste donc a trouver une méthode qui permette
de rendre ce biais nul. Deux méthodes sont proposées ci-apres : La méthode des moindres
carrés généralisés et la méthode de la matrice instrumentale.

3.4.3 Méthode de la Matrice Instrumentale

Puisque le biais de I’estimateur des moindres carrés est biais¢ a cause de la corrélation entre X'
et e, on se propose de déterminer une autre matrice qui permette le calcul de 4 tout en évitant
cette corrélation et donc le biais de I’estimateur.

Posons :
0=(2Tx)"'Z7y (3.14)

Ou Z est la matrice instrumentale.
Quelles sont les conditions sur Z pour que 1’équation précédente ait un sens ?
En poursuivant le calcul :
0=(2TX)"1ZT(X0 +e)
0=0+(2TX)"'Z7¢

Pour que

~

E0 =06
il faut :

E[ZTX]#0 et E[ZTe] =0 (3.15)

Plusieurs choix de Z sont possibles, en voici deux :

Le premier choix consiste a faire deux campagnes de mesures avec la méme entrée u;, le plus
souvent consécutives (décalées dans le temps). Vous avez alors la possibilité de déterminer
deux matrices X soit X; et X;. En posant
> vTv \—-1vT
0=(X; X1)" Xam (3.16)
Il n’y a plus de corrélation entre X, et y; (le bruit est stochastique et ergodique) le biais est
bien nul. La deuxiéme proposition consiste a créer les données nécessaires a la création de la

matrice X, a I’aide d’un modele de types moindres carrés simples issu de la premiere
campagne de mesure.

3.5 Identification en boucle fermée

Ce domaine de I’identification est actuellement tres actif. En effet ces modeles sont
nécessaires dans le cadre de la commande prédictive. Plus pragmatiquement, rappelons que le
plus souvent I’identification en milieu industriel s’effectue sur une machine en production. Il
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est par conséquent difficile voire impossible d’ouvrir la boucle pour procéder a une
identification. C’est tout particulierement le cas des systeémes instables. Il reste néanmoins

possible d’obtenir un modele. Le systeme de la figure 3.10 représente le systéme a identifier
C(z—4)

en boucle fermée. Le correcteur du systéme est représenté par la fraction rationnelle P(z=*)°
Trois approches sont alors possibles.

La méthode directe Dans ce cas on utilise les entrées v; et les sorties y;. L’identification se
fait alors comme en boucle ouverte. L’avantage de cette approche est de ne pas nécessiter la
connaissance du régulateur. Les méthodes ARX, ARMAX et les mod¢eles d’état donnent de
bons résultats. Les meilleurs résultats seront obtenus si :

— Le mode¢le de bruit est bon
— La boucle de retour n’affecte pas ou peu le spectre du signal d’entrée (v;))
— le rapport signal a bruit est important (peu de bruit)

Dans le cas contraire, I’estimateur est biaisé.

Cs
St

P(z—1)

Q(=z"T)
ui " P vi p—— /L* Yi
o e, Y(0— <2, ’

O— HE™) = S5 G(=™) = 7= 5O

Fig. 3.11 — Identification des systémes en boucle fermée.

La méthode indirecte Dans ce cas on utilise les entrées u; et les sorties yi. Bien entendu on
identifie alors le systeme en boucle fermée soit :

M(z™Y) =

B'(z7')  H(z"")G(z7") C(z"YHY)B(z™)
A(z71) 1+ H(271)G(2™! C(z71)B(z~

(z=1) (z=H)G(z71) (2=1)B( (3.17)
La connaissance du régulateur du régulateur nous permet de déterminer le modele du systéme:

M(z™1)

v7—l —
G = gy s MEnEE (3.18)

L’avantage de cette méthode est que n’importe quelle méthode d’identification est applicable
et donnera un modele du systéme en boucle fermée. Par contre, la moindre erreur sur le
régulateur (pas forcement bien connu, parametres, saturations ...) se retrouve dans le mod¢le.

37



Chapitre 3 Identification paramétrique

La méthode "Joint Input-Output" Avec cette méthode on se propose de déterminer
simultanément les deux mode¢les :

— le mode¢le du systeme
—le modéle du correcteur.

Ceci s’effectue facilement en utilisant les modeles paramétriques d’état sous Matlab.

Lvl (3.19)

La matrice 4 contient alors les dynamiques du correcteur G,y et celle du systéme en boucle
fermée G,y. Comme pour la méthode précédente on remonte au modeéle du systeme par calcul.

Exercice 3.4

Soit la fonction de transfert identifiée en boucle fermée par la méthode indirecte. Et
soit un correcteur PI de forme parallele associé a cette fonction de transfert donné par :

1
M(s)=230(;+) et H(s)=10+2
s°+31s+30 s

Déduisez le modele du systéme en boucle ouverte.
Solution :

Avant d’utiliser 1’équation (3.18) nous devons d’abord écrire la fonction de transfert du

10 1
correcteur, soit H(S) = 10+£ = M
K K
30(s+1)
G(s)= (5) - s +31s+30
H(S)—M(S)H(S) 10(s+1)_ 3O(S+1) 10(s+1)
s s°+31s+30 S
30s(s+1) 3s 3

G(s)= 10(S+1)(S2+31S+30—30S—30) :(Sz+s) Tetl

3.6 Boite d’outil d’identification sous matlab « identool »

Matlab est avant tout un outil de calcul ! Matlab propose donc toute une série d’outils
d’aide a I’identification. En particulier, quatre modéles linéaires, les plus couramment utilisés
sont des fonctions de Matlab. Dans le tableau 3.2 ces mod¢les sont présentés avec leurs
utilisations "classique" et la méthode de détermination des parameétres. Notez qu’une lecture
de la documentation concernant la boite a outils "identool" est une excellente activité !
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Face a la facilit¢ de calcul de modeles, le probléme n’est plus vraiment de choisir une
structure adaptée mais faire le tri parmi les quantités de modeles calculés.

3.7 Exemple d’identification par la toolbox identool
1%¢ étape : Tapez ident sur 1’éditeur de command window de matlab.

La GUI suivante de la toolbox s’ouvre.

7 o 1

K- preprocess

Veldation Deta

@0émarrer| O (3 & > (W] Lettre de recomm... | (W] Poly_cours_Identifi...| £ Beam & Ball © MATLAB14 &3 Downloac ads {2 com sans modelp... | @ (20077 non ls) - k... || 4 B MATLAB (R201... - & « H D@ 15:11

Fig. 3.12 — La GUI de la toolbox identool de matlab.

2™ étape : cliquez sur import data & gauche de la fenétre de la GUI Choisissez le type de
données expérimentales utilisées pour votre identification. Par exemple time domain data.

zzzzzzz

Clok acknowiedged.No action ivoked.

Démarrer| © @ @ > (@ Lettre de recomm.. | (i Poly_cours_Identifi..| £ 8eam & gall © warLanis © Downlaads 23 com sans model ... | @ (20077 non us) - k... [ 7 MATLAB R201... - (& «BDSD 18:16

Fig. 3.13 — L’importation des données expérimentales temporels.
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Alors une autre fenétre s’ouvre pour importer ces données.

) System Identification Tool - Untitled -|& ﬂ
Import data. ¥ Import models
‘ Operations ‘
) Import Data BEE
Preproces: K | —_
Data Format for Signals
‘Workspace Variable
Input [
= e T
Working Deta
Data Information
Dota o Imydata
‘ Starting tim —
Semplngtervat [T
Estimate - ¥
= vors |
Import Reset |
Deta Views
Close Help
To To
Workspace LT Viewer
r
r r r r
U Vaidation Data
Click acknowledged. No action invoked.
@/émarrer| (O (@ @ > (W Lettre de recomm... | (W] Poly_cours_identifi... | £ Beam & Ball | & maTLABIA £ Downloads A com sans model.p... | @ (20077 non lws) - k... || 4\ 8 MATLAB (R201... - [ « ¥ D &9 18:18

Fig. 3.14 — Fenétre des données d’entrée et de sortie avec période d’échantillonnage.

3eme étape : remplissez cette fenétre par les symboles u et y qui désignent respectivement les

signaux d’entrée et de sortie ainsi que la période d’échantillonnage de 1’acquisition de ces
données. Vous pouvez aussi leur attribuer un nom dans mydata.

4*™ étape : cliquez sur import, alors un signal apparait sur une subdivision de la fenétre de la
GUI, identool.

5™ étape : filtrez les données si nécessaire en utilisant la rubrique Preprocess, puis les
insérées sous le nom de mydataf dans une autre subdivision de la GUI.

) Import Data BER
Data Format for Signals
Workspace Variable
ot
Output
¥
Datanformation
Det
mydsta
Startngiine
i
Sampiog tervak
por
e
Import. Reset
cose Heo
Démarrer| © @ @ > [W]Lettre de recomm... | (W] Poly_cours_Identif...| £ Beam & Ball © MATLAB14 £ Downloads 23 com sans model.p... | @ (22077 non us) - k... || 4\ 8 MATLAB R201... - [ « B O 9 18:20

Fig. 3.15 — La fenétre import Data de la GUI de la toolbox identool.
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ystem Identification Tool - Untitled -5[%]
e Optans Wedow Heb

roort asta -] mport modets

$ o 4

A =
o e Vo]
-, "
-y
[
s~
By s e
ke o
S
o
- .
o I

The character is ot vakd htkey

@0émarres| O (@ @ > (W] Lottre de recomma... | (W] Poly_cours_identifi... | £ Beam & Ball | @ watLag1a | & oownloads {2 com sans model.pd... | @ AlJazeera ArabicL... || 4\ 7 MATLAB (R2014a)- [T « @ @ 19:03

Filler: u1-y1 HEE

Fie Options Style Channel Hep

. Periosogram
o . T T
| Range (aus)
|
1w 1
| ors
=10 - B :
| Range s
10 1
| [st0p bana g
10
Data name.
| e |
= B 1
| — = nsert
| Rever
| i
HotL L I J
107 10" 10 0 1w 10 Close
Frequency (radis)

Fiered data spectra shown. Press Insert 0 accept

@0émarrer| (O @ @ * (W]Lettre de recomma... | (W] Poly_cours_identifi... | €3 Beam & Ball © MATLABI4 &3 Downloads | £ com sans model.pd... | @ AluazeeraarabicL... || 4\ 7 MATLAB (R2014a)- B « @2 & 19:09

Fig. 3.16 — Fenétre du filtrage des données comportant le diagramme de Bode.

) System Identification Tool - Untitled BER
Fie Options Window Help

Jmport deta |

{ o i

AT ==
- N
Iy
»
P
-
— e
.5 e
1™ Time plot W Model output Transiert resp
— ® g —
-
—
=2 Vaidetion Deta

Drag deta icon here to select t as working data

émarrer| © @ @ > (@ Lettre dere...| @ roly_cours._... | £ maTLaB1s | Pcom sans m...| 4 MaTLAB R2... | @ Help (ne ré... | ( ditor - C:v... |[Bl System 1de... B potynomial ... | B wodel outp... | ) Gestionnair... | B « M8 & 19:44

Fig. 3.17 — Fenétre des données filtrées.
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6™ étape : cliquez sur la rubrique Estimate et choisissez Polynomial models, alors une

fenétre regroupant toutes les méthodes d’identification paramétriques dédices a la fonction de
transfert.

) System Identification Tool - Untitied

Data Views Model Views
Time pct
Oata spectra
S YUY
myotn
Trash e
‘Select orders and press the Estmate buton
@0émarrer] (O (3 @ » (W] Lettre de rec... | (W] Poly_cours_Id... | ) MATLAB14 [ com sans mo... | 4\ MATLAB R2014a | @ Help (ne répo... | ( Editor - C:\Do... || [} System Ident... [ Poynomial M... | & Gestionnaire ... | [ « M8 @ 19:35

Fig. 3.18 — Fenétre du choix de la méthode d’estimation.

7*™¢ étape : Choisissez la méthode désirée par exemple ARX et spécifiez les ordres du

numérateur, dénominateur et le retard (1 s’il n y’a pas de retard) du mod¢le choisit, puis
cliquez sur le bouton Estimate, quand le processus d’estimation est achevé, le résultat
s’affiche sur une subdivision a droite de la fenétre de la GUI avec le nom de 1’algorithme
muni des ordres du modele choisit par exemple arx221.

) Polynomial Models BER
Structure: ARX [na b k] 7
Orders: 1221)
Equation: Ay=Bu+e
g * ARX v
Domeain:

® Discrete (0.01 seconds)

™ Add noise ntegration (*ARDC" modiel)

Input delay: ]
Neme: b
Focus: Prediction E Initil state: [ado B
Covariance:
Reguorizaion. Estmate
Order Selection Order Edtor. ‘
= - |
ﬂ‘Demauel‘ O @ @ ” (W Lettre de rec... | (W] Poly_cours_id... | £3 MATLABI4 [A com sans mo... | 4\ MATLAB R2014a | @ Help (ne répo... |  Editor - C:\Do... | [ System identi... || B Potynomial M... ) Gestionnaire ... | [ « M & & 19:39

Fig. 3.19 — Fenétre de I’estimation des parametres de la GUI identool.
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)} System Identification Tool - Untitled BEE
Fie Options Window Help

Import deta

WA — 3
mydata mydatat 1 an221
I *//
mycstat
‘Working Data
Estmate -]
Deta Views Model Views
To T
_ Workspace LT Viewer _ . .
Time pit Model output Transiert resp
" Data spectra ™ Model resids Frequency resp Ju
Ao st [ [N Y .
= Noise spectrum
Traohy Vaidtion Data
Modelarx221 inserted. Double cick on icon fo text nformtion.
@0émarrer] O @ @ > (W Lettre de rec... | (W] Poly_cours_Id... | £3 MATLAB14 [ com sans mo... | 4\ MATLAB R2014a | @ Help ne répo... | (7 Editor - C:\Do... || [l System Ident... [ Potynomial ... | & Gestionnaire ... | & « M¥® & 19:49

Fig. 3.20 — Fenétre du résultat d’estimation obtenu.

8™ étape : cochez la case Model output en bas de la GUI, la réponse du modéle identifié est

tracée avec la réponse réelle du systéme en mentionnant un critere de validation du résultat en
pourcentage.

) Model Output: y1 HER
Fle Options Style Channel Experinent Help

Measured and simulated model outout

BestFits

0 10 20 30 40 50 60 70 80 90 100
Time.
W0émarrer] O @ @ > (W] 2 Microsoft ... ~‘ ) MATLAB14 [ com sans mo... | 4\ MATLAB R2014a| @ Help (ne répo... | (7 Editor - C:\Do... | [B System identi... | B Polynomial ... || Bl Model Outpu... ) Gestionnaire ... ‘ B«mB 1954

Fig. 3.21 — Fenétre de la validation du mode¢le estimé (sorite mesurée et sortie prédite).
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geme ¢tape : glissez la subdivision du résultat sur la subdivision To workspace en bas de la

GUI, pour obtenir les parametres estimés du modele de la fonction de transfert validée ainsi
que la moyenne des carrés de I’erreur d’estimation MSE.

Hove SEHLIC9cB00 )
D20 g @ [ S o |y [ @ () o
mmmdw-hmmhjw & b smnumu“r Hep
Seigt v v Data Workspace (- ClearWorkspace v |/ Clear Commends v Livary v [[[] Parotel v v  GpAddOns v
FILE VRRIABLE cooe SMULINK EnvRoNENT RESOURCES
< % [ 5 > C » Documentsand Settings » Kacimi » Mes documents » MATLAB » -
Workspace ®
>> arx221 = LD o e
e 0
€] ancz2t
- u 6 6
arx221 = vt s 49990
Discrete-time ARX model: A({z)y(t) = B(z)u(t) + e(t) Hy -0.0800 4
A(z) =1 -2 2z"1 + 2z*-2
B(z) = 0.0008638 z*-1 - 0.0008646 z*-2
Name: arx221
Sample time: 0.01 seconds
Parameterization:
Polynomial orders: na=2 nb=2 nk=1
Number of free coefficients: 4
Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.
Status:
Estimated using ARX on time domain data “"mydataf".
Fit to estimation data: 100% (prediction focus)
FPE: 5.76e-13, MSE: 5.756e-13
fx >
@0émarrer| O (@ @ > (W] Lettre de recom... | (W] Poty_cours_iden... | £3 MATLAB14 [ com sans model... || 4\ MATLABR2014a € Help (ne répond... | [ Editor - C:\Docu... | [ System Identific... | 2 Gestionnaire de... | & « M@ & 20:00

Fig. 3.22 — Visualisation des résultats de 1’identification sur command window.

D’autres algorithmes peuvent étre testés afin de valider le modele qui correspond aux
meilleurs résultats obtenus.
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Tab. 3.2 — Modg¢les paramétriques implantés sous Matlab.

B(z-)

A(2=1)

Modele ARX

Le modéle le plus simple, donne souvent de bons résultats.
le seul hic est le traitement du bruit qui est soumis a
la méme dynamique que l'entrée. A utiliser en premiére
approximation ou lorsque le bruit est surtout a 'entrée.

Méthode de détermination des paramétres :
Moindres carrés ou Matrice instrumentale

Modeéle ARMAX

Proche du modéle ARX, il s'utilise dans les mémes cas. Il
permet en outre de créer un modéle de bruit un peu plus
réaliste. C'est le modéle le plus utilisé.

Méthode de détermination des paramétres :
Maximum de vraisemblance

Modeéle OE

Bien que semblant plus simple que les précédents, le calcul
des parameétres s'avére plus difficile. Parfait lorsque le bruit
est surtout un bruit de capteur, done proche de la sortie.

Méthode de détermination des paramétres :
Maximum de vraisemblance

Modeéle de Box-Jenkins
Le modéle complet par excellence, la dynamique différente
pour l'entrée et le bruit en font un bon modéle.

Meéthode de détermination des parameétres :
Maximum de vraisemblance

45




Chapitre 3 Identification paramétrique

3.8 Cas pratique

Afin de mieux maitriser la toolbox de matlab identool précédemment présentée
dans ce chapitre, nous le concluons avec le cas pratique suivant :

On désire identifier un moteur a courant continu de vitesse nominale
correspondant a une alimentation en tension continue de 6volts, deux expériences ont
été réalisées en boucle ouverte sur la plateforme du banc d’essai de ce moteur, avec
deux échelons de tension d’alimentation de 6v et 8v ajoutées par un signal SBPA
d’amplitude de 0.1v.

Les fichiers Excel des deux expériences sont nommés VIT6.slx et VIT8.slx

1. Ramener les deux fichiers sur workspace de matlab en utilisant la fonction import
data puis sauvegardez-les en fichier.mat.

2. Préparez les données d’identification on utilisant le fichier VIT6.mat.

3. Ouvrir la boite outil d’identification de matlab en tapant ident.
4. Sur la gui de la toolbox, cliquez sur import time data avec :

u=6*ones(length(VIT6),1); y=VIT6 et sample = 0.025. (période
d’échantillonnage).

5. Sur le bouton d’estimate sélectionnez polynomial, commencez par la méthode arx,
Essayez différent nombres de poles et de zéros, comparez les résultats.
6. Faite la méme chose avec les méthodes armax et oe.

7. Validez le modéle qui donne le plus grand pourcentage du critére de similitude.

8. Quelle est la méthode qui donne les meilleurs résultats ? pourquoi selon vous ?
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Chapitre 4 : Estimations récursives
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4.1 Moindres carrés récursifs

L’estimation de parametres par la méthode des moindres carrés simples présente un
inconvénient majeur, la nécessité de calculer I’inverse d’une matrice, ce qui est long et parfois
impossible sur un microcontréleur. On se propose a travers cet exercice de déterminer une
forme récursive de cette estimation.

Les avantages d’une formulation récursive tiennent essentiellement en deux points.

— La possibilité de traiter un plus grand nombre de données que dans le cas de la
formulation directe (pas de pseudo-inverse a calculer), notamment dans le cas de
I’implantation sur un microcontrdleur.

— Dans le cas des systeémes variant dans le temps, la forme récursive permet de
"suivre" les parametres du systeme. Dans ce cas, I’identification en ligne est généralement
suivie d’'une commande qui elle aussi "s’adapte" aux parametres courants, on entre alors dans
le domaine des commandes auto-adaptatives qui dépassent le cadre de ce cours.

Comme dans tout probleme récursif on s’intéresse d’abord a la boucle, ensuite comment on en
sort et enfin comment on y entre. Supposons que nous possédions une estimation des
parametres a I’instant N :

On = (XEXN)T'XTYN
a ’instant suivant la nouvelle estimation est :

Onir = (XE 1 Xne1) 1 X Vs

Avec :
- [ TN +1 o [ YN+1 [ EN+1
XN+l = . 3 }.\'-é-l = . et Eni =
| X~ . Yy | EN
OU ZN41 = [~YN —YN—=1--- — YN—n+1UN+1 -- - u.\'—p-—l]
0Ny s'écrit alors :
2 -T - -1vT v~
On+t1 = (Xnp1XN+1)" Xy Y

= (XEXn +2Xpova) VXEYN + 2hynv+1)

En utilisant le lemme d’inversion matricielle :
(A+ BCD)'=A"1—_A"'B(C~'+ DA™'B)"'DA™!

On obtient :
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Ove = ((XTX0) = (XTXN) 2R 1+ 2y (XEXN)280] T 2 (XTXN) )
(:.\'_z-‘):\' 3 -1'.\'- 1YN+1 )

En posant a =1 +zx (X XN) 2%,

Ovs = ((.\'_\T‘.\"\-‘; — (XTXN) 2R [+ ona(XTXN) 2T ) s -c’.\'T..\\-‘ri)
(X3 Yy + 25 1un )
9.\--; = (( \' XN = ( \'T\'\ I{ a” ey \'T XN ( \':{j)j\' —~ r,\v-;y.\'-:)
= (..\_\'.\‘\'; XTYN HXEXN) T 2l — (XEXN) T 2he ave (XEXv) ™ XE Yy
—(XTXN) 2R e e (XEXN) T e RN
= Oy + E'.\':{"-.\'.\",I"'I{_ yv+1 — (X% \'\]-:I{- o~ zyaily
—(xExn) 2t e N (XEXN) 2T uva
= Oy —( XEXN) a0t (J:_\'-;(i\')
HXTXN) 2l a7 (mava (X XN) 2 uve) + (XEXN) 12k v

= §\~ - (’_\’f\r-.\’_y '}‘:x_{-_:a‘: (I,\'-:a\')
+( \—r X ~“:x{-_; (—a':J:.\'-:C'.\'.{‘-.\'.\“.I_:I.?\"—:I/.\'—: + yN+1)

= 0\ —f\ X~N)~ x\_: (I_\'-;g_\')
HXLXN) 2l a7 (—ava (XEXN) 20y, + a) yva

— a\' - (X¥XN) 2%, 07! (I.\'-:a.\')
HXTXN) 2% e v

= Oy + (/-\',z?.\'.\‘)_:l’_r\--;a_: (y_\'-: - I.\'-:a\')

On obtient finalement une formule de récurrence :
5.\'+1 = 5_\' - (X_\IX_\')_II?\-'HG_I (y_\-+1 — 1'_\‘+1§.\')

Le terme (J’N+1—XN+1

6?) représente I’erreur d’estimation a 1’aide des parametres précédents.

L’équation est alors : la nouvelle estimation est I’ancienne estimation corrigée par un terme
proportionnel a I’erreur d’estimation précédente, que 1’on peut récrire sous la forme.

5_\'+1 = 5_\‘ + Kn+1 (y_\'+1 = I_\'+1a\')

L’algorithme général est donc :

On+1 = On+ Kn+i <y.\-+1 — 1‘_\'+1§.\') (4.1)
Kny1 = Py, (I+ I.\'+1P_\'I_7\-+1)_l (4.2)
Px+1 = Py —Kn+1zv+1 Py (4.3

On remarquera une analogie avec le filtre de Kalman, en fait ¢’est bien 1’équivalent d’un filtre
de Kalman appliqué sur le systéme suivant :
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La condition de convergence est la méme : ey doit €tre un bruit blanc.
L’initialisation de 1’algorithme se fait de deux fagons :

— Si on connait une premiere estimation de 6 (en provenance d’une méthode non
récursive par exemple), on I'utilise. Dans ce cas on prend Py = Al avec 4 petit (petite variance
du bruit)

— Si on ne connait pas de premiere approximation, on prend 6y quelconque et Py = Al
avec 4 grand (grande variance du bruit).

Cet algorithme ne peut étre utilisé que si les paramétres du systéme sont constants, en effet
lorsque N tend vers 'infini, Py tend vers 0, alors une variation méme importante des
parametres n’influe plus sur I’estimation de 6. Notons encore que sur le plan numérique la
forme Pni1 = Pn — Knrixne P est trés mal conditionnée, on lui préfere la forme :

Pxi1=(I — Kxn+12x+1)Pv(I — Kx+1zx+1)7 + Kn1 KXo

Si les parametres évoluent brusquement, une solution consiste a réinitialiser Py = Al avec 4
grand si les parameétres évoluent lentement on peut utiliser :

One1 = On+EKyp (.UA\'-I - -l‘_\'—la_\') (4.4)

Kxi1 = Pyak., (M +axaPyak,,)” (4.5)
1

Pny1 = (P_\'_I\-_\‘vll‘_\'-—lP_\')X (4.6)

Cependant cet algorithme présente I’inconvénient de faire croitre Py de facon exponentielle
s’il n’y a plus d’excitation.

Voici d’autres choix pertinents

— a gain constant : on force alors Pn:+; = Py ; cela évite la diminution du gain en
cours de recherche des parametres, et on donne ainsi plus de poids aux acquisitions les plus
récentes ; cette option convient bien a un systéme dont les paramétres varient.

— a gain décroissant : Py = cste, cas classique, qui convient a un systéme a
parametres constants.

— a trace constante : on garde tr(Pn) = cste (multiplication par un facteur correctif a
chaque itération) ; on a les mémes avantages que dans la recherche a gain constant mais on
module en cours de recherche le poids relatif de chaque paramétre.

Cette méthode présente les mémes avantages que la méthode des moindre carrées non
récursive, mais aussi le méme inconvénient : I’estimateur est biaisé ! Aussi on lui préfere
généralement d’autres méthodes telles que la méthode de la variable instrumentale récursive.
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4.2 Variable instrumentale récursive

L’algorithme, trés proche de celui énoncé en

5.\'—1 = 5_\' + KN+ (.11.\'—1 - -T.\'+15.\') (4.7)
Kx+1 = PnZ%. (02 +I_\'—1P_\'Z_(-+1)_l (4.8)
Pnty1 = Py —Knyti1zn+1PnN (4.9)

Dans ce cas Zn+ représente un vecteur ligne instrumental compos¢ un peu comme la matrice
instrumentale, soit d’observations retardées de la sortie soit de la sortie d’un mode¢le
auxiliaire.

Beaucoup d’autres algorithmes existent, le lecteur intéressé en trouvera pléthore dans la
littérature. Néanmoins ils sont tous a peu pres fondés sur le méme principe. En fait, ils se
résument a I’expression d’un asservissement a gain réglable : on asservit les parametres pour
annuler une erreur, d’équation ou de sortie selon la méthode. La valeur du gain influe, comme
sur n’importe quel systeme, sur la stabilité, soit la convergence de la méthode, et sur la
rapidité.

Moduler le gain revient donc a moduler la rapidité de convergence : si I’on a affaire a un
procédé dont il faut poursuivre les parametres, qui varient effectivement dans le temps, on
aura intérét a avoir un gain fort ; si par contre le systéme est fortement bruité, on a intérét a
avoir un gain faible, sinon la sortie du modele va poursuivre le bruit en faisant varier les
parametres a chaque période d’échantillonnage, ce qui n’a pas de sens physique. Un bon
réglage du gain demande plusieurs essais et pas mal de bon sens.

Exercice 4.1

Considérons le systéme a temps discret décrit par 1’équation de récurrence suivante :
y(k+1)+ay’ (k)=bu(k)

Le signal d’excitation u(k) est un échelon unitaire et la sortie y(k) mesurée est donnée par le tableau :

k 0 1 2 3 4 5 6
y(k) 0 0.01 1.05 1.69 3.02 7.4 39.3
Tableau 4.1 : Données mesurées.

1. Déterminez les paramétres estimés Z;par la méthode des moindres carrés
ordinaire.

2. Supposons qu’une nouvelle mesure y(7) = 1082 est disponible. Trouvez les nouvelles

valeurs de b en utilisant la méthode des moindres carrés récursives.
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Solution :

1. Pourk=1,2,3,4, et 5nousavons :

y(2)=-ay* (1) +bu(1)
y(3)=-ay*(2)+bu(2)
y(4):—ay ( )+bu(3)
v(5)=—ay*(4)+bu(4)
y(6)=-ay*(5)+bu(5)
Ces équations peuvent étre €crites sous forme matricielle comme suite :
Y=00
Ou
Y=[y(2) »(3) »(4) »(5) y(6)]T=[1.05 1.69 3.02 7.4 393]
=y (1) u(1)] [-0.0001 1]
-»*(2) u(2)| [-1.1025 1
®=|-y’(3) u(3)|=|-28561 1| e e{ﬂ
-2 (4) u(4) -9.1204 1
=y’ (5) u(5)| [ -5476 1]
’ [3091.2 —67.8} ’ {—2230}
O P = et O'Y=
—67.8 5 52.5

0.0063 0.2848

Finalement les parametres a et b calculés par la méthode des moindres carrées

((DT(D)_I ={0.0005 0.0063}

ordinaire sont donnés par :
.~ |a R 0.0005 0.0063 || —2230 -0.6994
0=|.|=(0o'®) @'Y= =

b 0.0063 0.2848 || 52.5 1.0025

2. En utilisant la méthode des moindres carrées récursives, nous obtenons :
-1
- —y? 5) 8.9919¢10° —3000
P(6)=(o(6) 0" (60 =1 ™ BNr_z ) wis)]] =
(6)=(¢(6)" () ﬂu@ (25 u(s)]| =M

0.0005 0.0063
0.0063 0.2848

6(7)=0(6)+ P(7)¢(7) »(7)~0(7)0(6) ]

R —-0.6994
Avec 6(6)={ } et y(7)=1082.

Ou P(6)=(®'®)" {

~1544.5 1]

(7)P(6)

(7)o
1+¢"(7)P(6)o(7)

<
~
—
|
~—
Il
|
\<N
| —
N
~—
<
—
(@)
~—
I_l
~ r—1
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0.0005 0.0063] 1 [0.5867 7.2348
P(7)=

0.0063 0.2848 | 1174.6|7.2348 89.2184

(7)= 5.1313e-07 0.0001
| 0.0001  0.2088

P(7)¢(7)={_0'0007} et ¢ (7)0(6)=[-1544.5 1]{_0'6994}1081.2

~0.0087 1.0025
A | [-0.6994] [-0.0007 ~0.6999
0(7)=| . |= T (1082-1081.2) =
b| | 1.0025 | |-0.0087 0.9963

4.3 Cas pratique

La méme expérience utilisée dans le chapitre précédent pour illustrer I’identification
par la méthode des moindres carrées simple, sera exploitée pour appliquer 1’identification par
la méthode des moindres carrées récursive.

On désire identifier un moteur a courant continu de vitesse nominale
correspondant a une alimentation en tension continue de 6volts, deux expériences ont
¢été réalisées en boucle ouverte sur la plateforme du banc d’essai de ce moteur, avec
deux échelons de tension d’alimentation de 6v et 8v ajoutées par un signal SBPA
d’amplitude de 0.1v.

Les fichiers Excel des deux expériences sont nommés VIT6.slx et VIT8.slx

1. Ramener les deux fichiers sur workspace de matlab en utilisant la fonction import
data puis sauvegardez-les en fichier.mat.

2. Ouvrir le fichier simulink rls_motl.slx et visualisez les différents blocks utilisés
dans ce programme de simulation.

3. Lancez le programme et visualisez les résultats et les différentes figures.

4. Refaire la méme procédure avec le fichier VITS.slx

5. Comparez les résultats obtenus par les deux simulations.
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Scope To'Workspace
b1
N TLAB F. ' > ToWoﬁspaceL ”
| B a
MATLAB Fen
Workspace2
0.00432] -
¥t 0.0001831
= To'Workspace3
Scoped ToWodspaced .1.264

From

Workspace Discrete Filter

: E%?—l DiS‘:I:ﬁ
e o)
g

MATLAB Fenl ToWonkspaces

Band-Limited
White Noise

UnitDelay

Pulse
Generator

Figure 4.1 programme de simulation de I’identification par les moindres carrées
récursives appliquée au moteur a courant continu.

w

— vitesse mesurée
—vitesse prédite

Vitesse du moteur a CC mesurée et estimée en rad/s
& ~ »
§§

0 1 2 3 4 5 6 7 8 9 10
temps en secondes

Figure 4.2 vitesse du moteur a CC mesurée et prédite par le mod¢ele identifié.

Le mod¢le discret de 7, = 10ms identifié par cette méthode est donné par :

G(z‘l) _0.0042z7"+0.0001831z™ o G(2)= 0.0042z+0.0001831
1-1.264z7'+0.2715z 2 —1.264z+0.2715
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